
Proof of Participation Voting for On-Chain Governance

Terry Chung, Sandip Nair, Uttara Ravi, Pranav Kajgaonkar

December 2021

Abstract

Governance is the process of maintenance and implementation of changes to a system. Within

the context of on-chain applications, this is the process by which different stakeholders come to

an agreement on what changes to implement and the process of implementing those changes. Of

particular importance in designing governance systems is taking into account its susceptibility to

Sybil attacks (the use of multiple network identities to gain more voting power) and plutocracy

(where those with more financial resources have significantly more voting power as in most coin-

voting systems). In this piece, we propose a proof-of-participation based voting mechanism,

with a particular use case in video games that is both Sybil resistant and anti-plutocratic.

Introduction

It is imperative for a decentralized protocol to have a way to upgrade, add features, change

itself in ways that don’t succumb to central authorithy - that being after all, its core value

proposition. Ideally, one would want such a protocol to be able to take into account voices of

its core users, core stake holders, without any value extractable via collusion in governance by

large players who have interests outside of the development and advancement of the system

itself. Though this itself is a hard concept to define, we generally assume that if the heaviest

users and those with the most skin in the game have the means to shape the protocol that will

result in the best outcome. Having said that, this may not always be the case.

1



Regardless of the obvious assertion that a decentralized system should not be governed by

a central entity by definition (though recognizing that centralization comes in varying degrees),

we also believe that decentralized governance may yield better results for certain protocols.

A centralized system is maintained by a centralized authority. In a protocol, this could mean

that a core developer group belonging to a company has the ability to unilaterally alter the

protocol. Not only does this require trust in the developers to implement what is in the users’

best interests (and not the dev teams’) it also introduces a centralized point of failure. Those

who lobby and bribe have to expend less resources as they only have to buyout and convince a

small number of people and the protocol is more prone to corruption. Decentralized governance

is not only more anti-fragile but also necessary for truly decentralized protocols.

Motivation

1. Problems with existing decentralized governance

Realizing problems in centralized governance models, especially in environments where the team

is anonymous, in different legal jurisdictions etc, the decentralized applications (dapps) of today

have implemented different forms of governance.

One of the most widely used systems today by most dapps is coin-voting, simple and quadratic.

In this scheme, the number of votes that you get is proportional in an increasing function to

the amount of tokens in the project that you hold. These, as notably documented by Vitalik

Buteirn in "Moving Beyond Coin Voting" [2] suffer from plutocracy, vote buying and coordi-

nation issues. They empower coin voters at the expense of other members of the protocol

community who either use or depend on the protocol more so than the large financial interests

(notably VCs and angels) who purchased the token early at a large discount [1].

Yet because it is hard to conduct Sybil resistant voting without coin-voting, because proof

of humanity schemes infringe on privacy and proof of participation validation in current proto-

cols is extremely hard, coin voting is the defacto governance model of most dapps today.

2



An example of the pitfalls of coin-voting might be Justin Sun’s takeover of Steem.[2]

2. Existing Proof of Participation Governance Mechanisms

Today, a notable example of off-chain proof of participation schemes are in multiplayer video-

games. In Old-School Runescape (OSRS) players are able to vote on updates to the game, and

the developers (by social contract) only implement updates that pass with a plurality (75%+)

of the vote[5]. In the popular mobile game Pokemon Go, the right to suggest the creation of

new ’PokeStops’ is only given to players above Level 38, which requires a significant investment

of time into the game [3]. All these governance models reward players who have played the

game and participated in the ecosystem, albeit at a surface level. Governance models based on

proof of participation are able to create protocols governed by their most avid users, irrespective

of their financial status, in a fair and verifiable way. One issue in both cases is that of bots

(defined below).

3. Emergence of new dapp protocols that allow verifiable proof of

participation

With the emergence of crypto-games, levels, which can act as a proxy to active participation

in the game-protocol, is information available on chain, especially in the case where they are

stored in an NFT or associated with your wallet address. We now have access to a tamper-

proof metric of "proof of participation". Using this information we can create new governance

models that make different sets of trade-offs in sybil-resistance and plutocracy and that may

solve existing issues with coin-voting. We can further extend this to other dapps that have

such metrics available. We will explore a construction and cost-of-attack for a simple example

of such model.

3



Outline

Our model for proof of participation governance determines the voting power Vi(xi) for a user i

based on the user’s level in a decentralized crypto-game. In this game, a player’s level is stored

on a blockchain, in either a mapping from address to level, or on an NFT that represents their

character as a state variable of the NFT. Therefore any updtae to player information such as

an increase in the level (which we verify through an assumption specified later) via submitting

a transaction to the blockchain network, costs a certain amount of gas and transaction fees.

This is the first mechanism we use to help counter botting attacks, where an attacker could

potentially employ a large number of bots to take over a majority of the voting power in the

system. This is because the cost of such a botting attack now scales with the number of bots,

and depends on the gas fee for making a level update (which could be arbitrarily set by adding

arbitrary operations in the function to level up accordingly so that it discourages bots, without

making it very expensive for honest members of the network to level up).

The second mechanism we use to counter bots is via scaling V (x) with x. We present analysis

of a particularly chosen V (x) but each game designer can choose this function dependent on the

desired and observed properties of their system. As we assume bots are caught at a constant

probabilistic rate, it is significantly more likely that real players who have played for a long

time and hence have achieved higher levels x have more voting power, and can thus out-vote

bots.

Finally we counter plutocracy via proof of participation, since the voting power of a player

depends on the effort put into leveling up in a game (via actively playing the game), not just

on the cost of leveling up (gas fees for level update transactions). Depending on sufficient

conditions to level up within the game (which can be made complex enough to make it difficult

to bot), and the efficacy of the bot-detection system, it is possible to achieve a state where

the only reliable method of accumulating voting power in the game is to level up by actively

participating in the network.

In this piece, we first start by introducing and defining terminologies from gaming that we

4



will be using. We then propose a voting model based on player levels in a general form where

the specifics of the level function x(t) and the player-level distribution can be replaced with the

observed and/or decided parameters of a specific game. We then proceed to analyze a specific

instance of a level function and a player-level distribution which closely models real-life video

games. We finally show the cost of obtaining a 51% voting power via a specific form of attack

on this system as a function of different parameters.

Terminologies borrowed from video games

We define certain terminologies borrowed from video games below :

1. Role Playing Game (RPG): A video game in which the player is in control of one or

more characters (in-game controllable units). The plot and mechanics of the game revolve

around the growth and development of characters.

2. Massively Multiplayer Online RPG (MMORPG or MMO): An online RPG with

a large number of players where they may interact with each other in-game.

3. Experience: Measure of the amount of effort that a player has put into the game. This

may be for a specific game character or for their game account as a whole.

4. Level: Experience thresholds which determine how far ahead a player is in the game. For

example, a character’s level in a role-playing game (RPG) determines its strength and

may also unlock several in-game features.

5. Farming: Repetitive tasks such as collecting materials or gaining experience by defeating

in-game enemies or completing tasks/quests. This is one of the biggest motivations for

botting in games.

6. Botting: Deploying some digital agents to farm on several game accounts to reap some

benefit, such as milestone rewards achieved for reaching certain levels, etc without spend-

ing time to play the game yourself.

5



Model: Proof of Participation voting

Assumptions

1. The existence of a public blockchain where transactions have an associated gas cost.

2. The existence of a decentralized game where the game can be played locally on your own

machine but account information such as character level is stored on a blockchain, and

requires transactions to be submitted to update. We also assume that it is impossible

to tamper with the level up process (i.e to level up a player must submit adequate proof

that they have completed the pre-requisites to level up, and the player cannot forge or

artificially accelerate the obtainment of this proof). This is not an issue we will remark

on, but we believe games on rollups can perform this task without consuming too much

gas.

3. The existence of some form of decentralized (or initially centralized) bot-detection mech-

anism that is available for this game (albeit probabilistic), to make bots distinguishable

from honest players.

4. The power of botting lies in numbers, not in the time spent in game. This is because the

more time an attacker’s bots spend in game, the higher is the probability of them getting

caught.

5. In the canonical attack vector we examine, we assume that the attacker at a time t releases

all of his/her bots into the network (that is, they start the game at the exact same time).

This is a reasonable assumption since the attacker would want to maximize the time

their bots spend farming experience in the game. At the moment we don’t consider other

strategies (playing for a while and intermittently botting) though we recognize those may

be much more cost optimal for an attacker that bots.

Definitions

Consider a decentralized game as defined earlier and a player P , who has spent time t farming

experience in the game. Additionally, assume a global clock such that the current player

distribution varies with time.

6



1. Level function X(t): The current level of a player who has spent t time farming for

experience in game. We assume that all players are playing at the optimal frontier. In

practice X(t) will vary for all players even for the same time spent playing t.

2. Bot detection probability b: Probability of detecting a bot at a given timestep.

3. Start threshold level s(b): The minimum level required to participate in voting, such

that the voting power below this level for a player is zero. Intuitively, b is a parameter

that depends on the level of centralization in bot banning the protocol and community

are comfortable with. This is decided by prevailing level of technological advancement in

securing certainty that a player is a bot based on their actions.

4. Voting power function V (t, b) = V (X(t), s(b)): The voting power of a player at level

X(t) given a starting threshold s(b).

5. Player level distribution n(x): The number of players in the game who are at level x

at a fixed time t. This function presents a snapshot of the distribution of players by level.

6. Max-level M : The maximum player level at fixed timestep t. Alternatively this can be

defined by the protocol. The choice does not make a difference in the calculations.

Voting power as a function of player level

V (t, b) =


0, X(t) ≤ s(b)

γ (X(t) − s(b)) , otherwise

where γ is a constant of proportionality (could be taken to be 1, for instance).

This is the general voting mechanism, where a player’s voting power can be calculated based on

their on-chain level (or recorded in an NFT that represents their account). Next, we proceed

to analyze a specific instantiation of this model which we believe closely resembles real world

games.

7



Analysis

We model the fact that in video games it is progressively more difficult to reach higher levels

by the following level function:

X(t) = ⌊α log(t + 1)⌋

where α is a constant of proportionality, which can be 1 for instance. This choice is justified by

the fact that the logarithmic function’s rate of growth decreases as its input increases. Notice

that at t = 0, X(0) = 0. But note that this is an arbitrarily designation and game designers

should plug in their own level function here.

If we can detect bots more frequently, then we do not need to set s too high, so s ∝ 1/b. Thus,

we define

s(b) = ⌊β
(1

b
− 1

)
⌋

where β is a constant of proportionality. Notice that s(1) = 0, since in that case bots will

always be detected and there will be no bots in the system. Also, taking the floor is a design

choice, since we want integral levels.

Let every increase in level require an update transaction which costs g gas. Then the cost

in gas to reach a specific level l starting from level 0 would be gl. Note that the game designer

can include arbitrary calculations in the level up process to raise g. Therefore the upper bound

of g is a design decision. We now calculate the number of timesteps to be spent farming in

game that is required to reach level l. We have

l = X(t) = ⌊α log(t + 1)⌋

=⇒ l ≤ α log(t + 1) ≤ l + 1

=⇒ e
l
α ≤ t + 1 ≤ e

l+1
α

=⇒ e
l
α − 1 ≤ t ≤ e

l+1
α − 1

Hence, the time spent by a player P starting at level 0 to reach a certain level l by farming is

t ∈
[
e

l
α − 1, e

l+1
α − 1

)

8



Next, we instantiate our player-level distribution. Again, it is based on the assumption that

leveling up gets progressively harder. In practice this will be a function derived from observed

states of the actual game and dynamically adjusted with time. Let

n(x) = ae−kx

where k is a function of T which determines the distribution at global time T . Let us determine

the value of the term a. We can do this by the fact that the total number of players at a given

time T is N. We have
M∑

x=0
n(x) = N

=⇒
M∑

x=0
ae−kx = N

=⇒ a
e−k(M+1)

e−k − 1 = N

=⇒ a = N

(
1 − e−k

1 − e−k(M+1)

)

Thus, we have

n(x) = N

(
1 − e−k

1 − e−k(M+1)

)
e−kx

This is the number of players with level x at time T , which is determined by k(T ).

Let V(x) be the cumulative voting power of all players at level x at global time T . Then

V(x) = n(x) × V (x)

= n(x) × γ(x − s)

where V (x) = γ(x − s) is the voting power of one player at level x.

Attack model

We carry out a probabilistic analysis of a naive and simple attack (for botters), which is based

on the assumption that botting is easy (it is inexpensive to control a large number of AI agents

for farming). To accumulate voting power, the attacker deploys a large number of bots at the

same time and has them reach the minimum level required to participate in voting, which is

s + 1. This is so that the time spent botting is minimized.

9



Let the attacker deploy y bots at the same time and let them farm till level s + 1 to accu-

mulate enough voting power to take over the system (possess more than half of the total voting

power). The time required to reach level s + 1, as calculated earlier is

t ∈
[
e

s+1
α − 1, e

s+2
α − 1

)
The probability that a bot was not caught for time t and was able to enter the voting pool is

Pr[bot not getting caught] = (1 − b)t

Let B(t) = number of bots that were not caught for time t. Define an indicator random variable

Ii(t) for each bot i as

Ii(t) =


1, bot i was not detected till time t

0, otherwise

E[Ii(t)] = Pr[bot not getting caught] = (1 − b)t

then we have

B(t) =
y∑

i=1
Ii(t)

=⇒ E[B(t)] = y(1 − b)t

Hence, the cumulative voting power acquired by the bots is

Vbot = y(1 − b)t × γ(s + 1 − s)

= γy(1 − b)t

Note that the total voting power at this time instant will be

=
M∑

x=s+1
V(x)

=
M∑

x=s+1
n(x) × γ(x − s)

= γ ×
M∑

x=s+1
N

(
1 − e−k

1 − e−k(M+1)

)
e−kx × (x − s)

10



as only those at level x > s are able to vote.

Since the attacker wants to have at least 51% of the vote (of course if the protocol adjusts

this number upwards say to 75% like OSRS, then the protocol is more resistant to bots) of the

voting pool, the voting power held by the attacker should be more than half the total voting

power in the pool. After evaluating and simplification of the above sum we have,

Vbot∑M
x=s+1 V(x)

>
1
2

y > N

e−k(s+1)(ek(s+1)(M−s)+ek(s+2)(−M+s−1)+ek(M+2))
2(1 − b)t (ek − 1) (ek(M+1) − 1)


The expression on the RHS was calculated using an online tool called Wolframalpha.

Thus y which represents the total number of bots the attacker must start with has a lower

bound represented by the above equation.

The lower bound of the fraction of bots in the system can hence be represented by the

equation

f = y

N
>

e−k(s+1)(ek(s+1)(M−s)+ek(s+2)(−M+s−1)+ek(M+2))
2(1 − b)t (ek − 1) (ek(M+1) − 1)

Expected cost of botting attack

We provide an upper bound on the cost of this botting attack. Assume that none of the

calculated y bots got caught (though in reality, they did, we are doing this to obtain an upper

bound). The cost of getting all y bots to level s + 1 is

Cost ≤ y × (s + 1) × g

Note that this directly depends on the number of bots introduced y, which is what we will be

considering in our analysis.

11



Results

Below we have plotted a curve for the equation we obtained earlier for the lower bound of f

(the fraction of bots released by an attacker into the system) against b which is the probability

of the system correctly detecting a bot.

Figure 1: Fraction of bots required as a function of bot-detection probability

In order to plot the complicated equation obtained for f we fixed certain variables. For

instance, we fixed the proportionality constants α, β, γ to be 1. We used the software desmos

to plot this curve between f and b, by assuming some realistic values for highest level at

the current moment in the game M (= 150) and the parameter for determining player level

distribution k (= 3).

12



As expected, with a more powerful system (higher competence in detecting bots b ) it

gets increasingly harder for an attacker to successfully bot without being detected. Hence the

fraction of bots in the system must be very large when trying to attack a powerful system with

a powerful bot detection mechanism.

Future work

In our work, we assumed the existence of a decentralized game in which proving amount of

participation should be possible in a secure manner. We’re yet to see a direct implementation

of this, and we hope to explore how rollups and existing games like Illuvium [4] navigate these

issues.

We focused our analysis on a very specific and naive attack, and also for specific instantiations

of the level function and player-level distribution. We hope to develop a general framework of

analysis for general functions and see how our analysis holds up against real values in practice.

Conclusion

We see that the expected cost of a botting attack scales with the number of bots deployed. It

is also resistant to plutocracy since actual time and effort has to be spent in farming experience

in the game. Most importantly we hope we’ve presented a novel method of voting that hasn’t

been tried before and solves some of the pitfalls of coin-voting at least within the context of

crypto-games.

13



References

[1] Vitalik Buterin. “Governance, Part 2: Plutocracy Is Still Bad”. In: (2016). [Online; accessed

17-Dec-2021].

[2] Vitalik Buterin. “Moving beyond coin voting governance”. In: (Aug. 2016). [Online; ac-

cessed 17-Dec-2021].

[3] Paul Tassi. “How To Submit ‘Pokémon GO’ Pokestop Location Nominations In Your Area”.

In: (2019). [Online; accessed 17-Dec-2021].

[4] Illuvium White Paper. A Fully Decentralised RPG and Collection Game Built On The

Immutable X L2 Network. [Online; accessed 16-Dec-2021]. Illuvium, 2021.

[5] Runescape. “Old School Runescape Polls”. In: (2021). [Online; accessed 17-Dec-2021].

14


