

Alternative Sybil Resistance Methods

Marcus Daly (mrd2194), Nathan Cuevas (njc2150),

Griffin Klett (gk2591), Lynn Zhu (jz2969)

COMS-6998 Foundations of Blockchains

Professor Roughgarden

December 17, 2021

Abstract
With growing energy usage and potential positive externalities such as file storage, research on a myriad
of Proof of Work alternatives has been published over the past decade. In this paper, a summary of
benefits, tradeoffs, and mechanisms of some of the more prominent and promising sybil resistance
mechanisms is examined. Additional analysis focuses on the real-world implementations of such
blockchains, as well as a larger comparison of energy usage, vulnerabilities, and decentralization.

Background
One of the most desirable properties of blockchains is decentralization; in other words, the responsibility
of maintaining and appending blocks onto the blockchain is not limited to a central authority. Current
implementations of blockchains achieve this by pseudo randomly selecting a leader among a network of
full nodes. A truly decentralized protocol must be "permissionless," meaning that it should be easy for
anyone that wishes to participate as full node to join the network. A permissionless blockchain must also
be "sybil-resistant," meaning that a single actor can't run a large number of full nodes to essentially control
a large fraction of the network. Currently, the most successful blockchain protocols such as Bitcoin and
Ethereum solve the "sybil-resistance" problem by allowing the probability of a full node being selected as
a leader to be proportional to how much the node has invested a scarce resource in the system, making
it expensive for a single actor to control a large fraction of the network.

In its current state, the most popular "sybil-resistance" solutions are Proof of Work (PoW) and Proof of
Stake (PoS). In a PoW blockchain such as Bitcoin and Ethereum, a full node is appointed the leader (or
miner) of a block if she is the first in the network to submit a PoW solution. A PoW solution is an easily
and transparently verifiable proof that the miner has solved a difficult cryptographic puzzle implying that
she has invested her resources and energy to get this solution. In a PoS blockchain like Solana or Cardano,
a full node proves what she has invested in a network by staking some number of coins, which will be
slashed if the node is provably dishonest. There is much debate about whether the current solutions are
optimal. For instance, PoW requires a massive amount of energy, most it not even being used to generate
the new block. PoS has a staking system that has no external dependencies, meaning the amount invested

in the system doesn't depend on anything outside of the protocol. There is ongoing research in finding
the optimal "Proof of X" mechanism that doesn't have negative side effects while being able to prove
securely and reliably what a full node has invested in the system. This paper will explore a few of the most
promising means to achieve this.

Motivations

Why Alternatives to PoW?

PoW has received much scrutiny since its release, and deservingly so, as PoW-based Bitcoin is not only
the first blockchain, but (as of 2021) has maintained status of largest cryptocurrency by market capital
since its inception. Many of the arguments against the use of PoW are very convincing, so much so that
significant research has been invested in alternatives to PoW; here we present the top arguments in this
regard.

Energy Consumption

Perhaps the most popular argument against the use of PoW is its energy consumption. Using data from
blockchain.com, in December of 2021 total hashrate of Bitcoin is approximately 160 ⋅ 10!" H/s which
equates to 5.0 ⋅ 10#$𝐻/year . Assuming the most efficient hardware is used (ASICs which have an
efficiency of about 10%𝐻/𝐽). Then the annual energy usage can be estimated to 5 ⋅ 10!$𝐽 or 1.4 ⋅
10!!𝑘𝑊ℎ, which is roughly 0.5% of the global energy usage, more than the country of Switzerland. Since
a Bitcoin has a block production rate of 10 min and the average number of transactions per block is
1973	txs/block (ycharts.com), then each transaction requires 1350	𝑘𝑊ℎ or about a month's worth of
electricity to the average American household. Note that the hashrate (and hence energy usage) will also
increase when more miners join the network.

Increased Centralization due to ASICs

In PoW based blockchains such as Bitcoin, the miner who provides the first PoW solution produces the
next block and is rewarded with a block reward. Therefore, miners are incentivized to increase the hashes
per unit energy of their mining hardware, so the use of ASICs have become the standard. Consequently,
the barrier to entry of mining has become increasingly difficult due to the exclusivity of
obtaining/designing the hardware. Those who have the means to design custom hardware for mining rigs
typically issue patents making it more difficult for actors with a small capital to be able to participate in
Bitcoin mining. It can also be observed that over the years, the hashrate of large mining pools have
dominated the total hashrate.

Figure 1: Mining Pool Statistics over Time (BTC.com)

Figure 1 shows the percent hashrate of the known mining pools and the hashrate of the largest mining
pool over the years. It is clear that independent mining has become essentially obselete over time and
large actors are controlling significant fractions of the total hashrate.

Mining has also been biased to where energy has been cheap. In January of 2021, the top 5 locations for
mining (by hashrate) are China (53.3%), United States (10.41%), Russia (6.91%), Kazakhstan (6.17%),
Malaysia (5.18%). Large scale operations are typically held in rural locations of these countries where cost
of electricity is cheapest, often competing with nearby towns for energy resources.

Selfish Mining Attacks

A popular argument amongst PoW enthusiasts is that PoW protocols are more "secure" than alternatives.
The backbone of this argument lies in the fact that it is practically impossible (assuming cryptography isn't
broken) to guess a nonce without brute forcing every possible solution. In Satoshi Nakamoto's original
whitepaper of Bitcoin, the trust assumption was if less then 50% of the hashrate is controlled by a single
adversary, then no actor can take full control of the blockchain. This has shown to be false with Selfish
Mining, where an adversary can mine blocks in secret and only announce the secret chain when it is most
advantageous for the miner. An adversary can provably achieve this with < 50% of the overall hashrate.
This attack is possible in PoW since these proofs can be generated and withheld without the network
knowing about them and hence the attacker has the advantage of having fast network speeds and no
difficulty adjustment applied to their mining.

Why Alternatives to PoS?
PoS is the second most popular sybil-resistance mechanism by market capital (~$115B as of December
2021, not including Ethereum 2.0). Since the sybil-resistance mechanism in PoS does not involve
computing a cryptographic puzzle, it is significantly more energy efficient. PoS is promising technology
that has seen many of the top blockchain projects adopt it (Ethereum 2.0, Solana, Cardano); however, it
isn't without its faults. We will present the most convincing arguments against PoS.

Closed System
The only way for a node in a PoS system to participate in mining is to stake some amount of that
blockchain's native currency. This means that the protocol is a closed system as staking does not depend

on any external factors. In a PoW protocol like Bitcoin, an actor with a large amount of capital can invest
in creating a powerful mining rig and immediately have a large fraction of the total hashrate allotted to
her. In a PoS setting, if an actor wishes to participate in staking, she must buy the coins from someone
else within the network, making it much more difficult for her to have a large fraction of the stake. This
has the arguable disadvantage that over the long term, more of stake will be concentrated to within the
same set of actors.

Nothing at Stake
Because a miner in PoS does not require rigorous computational power that PoW protocols require to
generate proofs, a miner can claim to extend many blocks without penalty, this is known as the "nothing
at stake" problem. This can potentially reward dishonest miners and can slow down the consensus of the
protocol.

Metrics to Compare Proof Mechanisms
Learning from the common criticisms of PoW and PoS that was discussed in the previous sections, we
can identify properties that alternative sybil-resistance mechanisms can improve upon.

Energy Consumption
Like previously mentioned, the blockchain/cryptocurrency criticism that gets a lot of limelight (and
rightfully so) is the enormous amount of energy consumption of PoW based solutions. Although PoS solves
this issue, an alternative sybil-resistance protocol that preserves the energy efficient property of PoS is
favorable.

Predictability
PoW proofs are generated by guessing nonces via brute force until a guess is found that when hashed, is
less than the difficulty parameter. By the random oracle assumption, the probability of finding a solution
given a particular guess is uniformly distributed; this also implies that it is hard to predict the next leader.
The probability of finding a solution is also directly proportional to the amount of computation invested
in trying to find the solution. Non-PoW based consensus doesn't always have this advantage of an easily
verifiable and random leader selection. When analyzing alternate mechanisms, it is important to gauge to
what extent the next leader is predictable.

Attacks
Any protocol is subject to attacks, but we want the outcomes of these attacks to have as little
destruction as possible. It is also worth looking into the practicality of such attacks; e.g., Selfish Mining
isn't seen much in practice.

Decentralization
It is clear from previous analysis that ASIC-based PoW suffers from economies of scale and has become
more centralized over the years. When looking at new sybil-resistance mechanisms, we want to ensure
that anyone can participate in mining with a low barrier of entry. Closed systems such as PoS can arguably
lead to more centralization in the long term because staking requires the coins to be bought from within
the closed environment of the blockchain, whereas a miner in a PoW network can participate in mining
using wealth from the outside world. This fact can lead to a higher concentration of wealth within a small
set of stakers in the long term; therefore, "open systems" such as hardware-based mining are worth
looking in to.

Proof of Space (PoSpace)

Overview
Due to the large amount of computational power and energy consumption required for Proof of Work
(PoW), many proposals appeared to find alternative approaches for PoW. One of the alternative
approaches, Proof of Space (PoSpace), was first introduced by Dziembowski et al. [16] in 2015. The idea
was motivated by memory or disk space. Due to a significant amount of free disk space available for many
users, it would be profitable and reasonable to dedicate some of this free space to a blockchain.
Furthermore, running a PoSpace node is essentially for free, compared to the demand for computation
hardware like GPU.

Mechanisms

Proof of Space is an interactive protocol between a prover 𝑃 and a verifier 𝑉, and there are two phases.
According to [16], during the initialization phase, 𝑃 stored non-trivial information data ℱ& of size 𝑁 ∈ ℕ,
and 𝑉 stores a short commitment 𝛾 to the data. After some point when 𝑉 initializes the execution phrase,
𝑃 will provide a proof with an amount of memory to the protocol to 𝑉, and 𝑉 will run a PoS to verify that
the proof was well generated according to ℱ stored in 𝑃 and thus, only outputs either accept or reject
based on the verification result.

As for definition, suppose there are two parties 𝑃 and 𝑉 with shared input 𝐼𝑁, local inputs 𝐼𝑁', 𝐼𝑁(, and
local outputs 𝑂𝑈𝑇) and 𝑂𝑈𝑇(, the execution of PoSpace takes place as follows:

L𝑂𝑈𝑇(, 𝑂𝑈𝑇)N ←	< 𝑉(𝐼𝑁(), 𝑃L𝐼𝑁)N > (𝐼𝑁)

For initialization phase, 𝐼𝑁 includes parameters, such as an identifier 𝑖𝑑, a storage bound 𝑁 ∈ ℕ, etc. The
output 𝑂𝑈𝑇(would be 𝜙, which represents the small piece of information stored in 𝑉, and 𝑂𝑈𝑇) would
be 𝑆 with size 𝑁, which represents the information stored in 𝑃. Thus, the formula becomes

(𝜙, 𝑆) ←	< 𝑉, 𝑃 > (𝑖𝑑, 𝑁,…)

For execution phase, both 𝑃 and 𝑉 take output from initialization phase as input. After this phase, 𝑃 has
no output, while 𝑉 chooses either accepts or rejects.

({𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡}, 𝑁𝐼𝐿) ←	< 𝑉(𝜙), 𝑃(𝑆) > (𝑖𝑑, 𝑁,…)

More specifically, the prover 𝑃 needs to generate a large file ℱ locally during an initialization process with
takes some time 𝐼 , which must be at least linear in the size of file. This is used for having small
computation, storage requirement, and communication complexity of the verifier 𝑉 during both phases.
After filling the amount of memory that 𝑉 requires, 𝑃 sends a commitment 𝛾 of the memory it has
reserved to 𝑉 and then generates proofs during the execution phase. 𝑉 can set a challenge to 𝑃, then 𝑃
will retrieve a memory statement 𝑆 and send it to 𝑉. Finally, 𝑉 can accept or reject based on the memory
statement 𝑆 from 𝑃 and commitment 𝛾.

Based on the construction, a PoSpace in the random oracle model should satisfy the following properties:

- Efficiency: Let 𝜆 be a security parameter. The verifier runs in 𝑂(1) time during initialization
phase and 𝑂(𝜆 ∙ log	(𝑁)) time during the execution phase. The honest prover runs in 𝑂(𝑁 ∙
𝑙𝑜𝑔𝑙𝑜𝑔(𝑁)) time during initialization phase and 𝑂(𝜆 ∙ 𝑙𝑜𝑔𝑙𝑜𝑔(𝑁)) during execution phase.

- Security: any prover that can convince verifier must either dedicate 𝑁 bits of space if the prover
is honest, or simply run the execution phase in 𝜃(𝑁) time on average if the prover is dishonest.

Techniques

As for the construction of proof, the first approach for Proof of Space is to use a standard technique called
graph pebbling for proving lower bounds on space complexity of computational problems. During
initialization process, it generates a directed acyclic graph 𝐺 = (𝑉, 𝐸) with |𝑉| = 𝑁 vertices. It labels 𝑙*
for each vertex 𝑖 ∈ 𝑉, which can be computed as:

𝑙* ≔ℋ(𝜇, 𝑖, 𝑙)! , … , 𝑙)")

where ℋ is a hash function, and 𝑝!, … , 𝑝+ are parent vertices/predecessors of vertex 𝑖 for ∀𝑖 ∈ 𝑉. Next,
𝑃 computes and stores labels. It then creates a Merkle tree with these values and share the root with
verifier 𝑉. In the execution process, 𝑉 simply asks 𝑃 for a subset of labels in the graph, and 𝑃 will show
the corresponding nodes of the Merkle tree. With the root and values, 𝑉 will be able to verify 𝑃.

In 2017, Abusalah et al. [12] proposed a new approach to Proof of Space based on storing tables of random
functions. The prover 𝑃 is given the description of random functions 𝑔,: 𝑁 × 𝑁 → 𝑁 and 𝑓:𝑁 → 𝑁 ,
where 𝑓 is chosen by the verifier or a random public challenge. During the initialization phase, it finds all
pairs 𝑥, 𝑦 ∈ 𝑁 such that 𝑥 ≠ 𝑦 and 𝑓(𝑥) = 𝑓(𝑦), then it stores (𝑔(𝑥, 𝑦), (𝑥, 𝑦)). During the execution
phase, verifier 𝑉 sets up a challenge called 𝑐 to 𝑃, and 𝑉 will accept if the proof can find a pair (𝑥, 𝑦) so
that 𝑔(𝑥, 𝑦) = 𝑐.

Implementation

SpaceMint

SpaceMint was first proposed by Park, Sunoo, et al. [19] in 2018. It is a cryptocurrency based on PoSpace
so that miners in SpaceMint can dedicate disk space rather than computational power, in hope of
alleviating large energy consumption from Bitcoin and finding the alternative effective approach to Proof
of Work.

Compared to any PoW-based blockchains like Bitcoin, generating blocks using PoSpace is computationally
cheaper and easier. Therefore, SpaceMint needs to consider about how to determine the miner who first
found the next block. It defines a quality function by assigning a quality value 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝜋*) to PoSpace and
making sure that the probability of any miner being the first to find an eligible next block is proportional
to the space it dedicates.

Specifically, suppose there is a set of 𝑚 valid proofs 𝜋*, where 1 ≤ 𝑖 ≤ 𝑚. 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝜋*) represents the
probability that has the best quality among 𝑚 proofs. So 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝜋*) can be computed as:

𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝜋*) ≔ 𝐷-#(ℋ(𝑎))

𝐷- is a maximum output of the distribution that samples of size 𝑁 values in [0,1] at random, and ℋ(𝑎)
denotes sampling randomness for 𝐷-.

Tradeoffs
Energy Efficiency
Based on the mechanism of Proof of Space, before mining, users dedicate some reserved non-trivial
amount of memory to the blockchain with the filling data. When the miner tries to mine a block on the
blockchain, the reserved space is used for generating solution to the challenges. Since the solution for
puzzle can be regarded as memory accesses, PoSpace is more energy and time efficient.

Take SpaceMint as an example. According to the data from [19], a miner takes 210𝑘𝐽/𝑚𝑖𝑛 to add one
block on SpaceMint using PoSpace, which means the annual energy consumption would be approximately
1.1 ∙ 10!!𝐽. Compared to the number we got about the annual energy consumption of Bitcoin (i.e., 5 ⋅
10!$𝐽) from blockchain.com in December 2021, the ratio of energy consumption between SpaceMint and
Bitcoin is approximately 1: (5 ∙ 10.), which is significantly small.

Nothing-at-stake Issue

The fast proof generation for Proof of Space may create the nothing-at-stake issue. It happens because
the proof is computationally easy and cheap to create, and a malicious miner can generate lots of
alternative blocks at close to no cost until the miner finds a relatively high success of attack or some
advantages over the process that follows the protocol. Therefore, PoSpace needs to be combined with
other mechanism that can counter the issue, such as combining time as Proof of Space and Time
(discussed in the later section).

Digging Attack

According to Martinho [18], a digging attack can be described as a miner trying to extend a block, such as
trying different transaction combinations to gain a better proof, in order to obtain an unfair advantage
over honest behaviors.

Long-range Attack

A long-range attack can be described as a malicious miner creating an alternative chain of transactions
privately starting from the same genesis block, until the number of blocks in the private chain exceeds the
chain created by honest miners. Since proofs are computationally easy to generate, the malicious miner
can create blocks at close to no costs. Since PoSpace alone is vulnerable to this attack, in some applications
like Chia (which will describe in a later section), it makes use of both Proof of Space and Proof of Time.

Proof of Space and Time (PoS&T)
Overview
Proof of Space and Time uses elements from both PoW and PoSpace to provide a low-computation option
for sybil resistance. In essence, this combines Proof of Space with the new notion of a “Proof of Time,”
which requires time to pass between each block on any chain. This is accomplished by the use of a

Verifiable Delay Function (VDF). This function requires sequential (non-parallelizable) computation to
solve, but is easy to verify.

Using a Proof of Time based on a VDF, we prevent adversaries from performing a long-range attack against
the blockchain. Because a VDF necessarily requires time to pass in order to make the sequential
calculations required, an adversary cannot speed up the process of adding to a new chain forked far down
the longest chain to be significantly faster than farming on the longest chain. Therefore, this bootstrapped
chain will be unable to catch up to the longest chain.

Mechanisms
Proof of Space and Time shares a mechanism similar to Proof of Space, where the addition of each new
block shares the same setup exactly as Proof of Space. The crucial difference is that after a block 𝐵 has
been accepted by a Proof of Space, A Proof of Time must be submitted for before this block is
“completed," and additional blocks can be added with 𝐵as their predecessor. Note, however, that this
proof of time may be submitted by any participant in the network. This may be accomplished (as in Chia)
through the use of a dedicated server that continuously works on a Proof of Time for the most recent
block on the longest chain. This Proof of Time is implemented in the form of a Verifiable Delay Function.

Verifiable Delay Function (VDF)
First, we will review the definition of a verifiable delay function, along with some potentially useful
properties a VDF may exhibit. Although named a “function," a VDF in reality consists of three algorithms:
one 𝑆𝑒𝑡𝑢𝑝, 𝐸𝑣𝑎𝑙, and 𝑉𝑒𝑟𝑖𝑓𝑦. These algorithms have the following inputs, outputs, and purposes, as
defined in [17]:

𝑆𝑒𝑡𝑢𝑝: 𝑆𝑒𝑡𝑢𝑝 takes as its input two parameters: a security parameter 𝜆 and a delay parameter 𝑡. It then
outputs a setting of public parameters 𝑝𝑝 = (𝑒𝑘, 𝑣𝑘), used to fix the domain and range of the VDF
challenge. Specifically, 𝑒𝑘 and 𝑣𝑘 are the evaluation and verification keys, respectively. Note that 𝑆𝑒𝑡𝑢𝑝
must run in time polynomial in terms of 𝜆 and 𝑡 must be sub-exponential in terms of 𝜆.

𝐸𝑣𝑎𝑙: 𝐸𝑣𝑎𝑙 takes as its input two parameters: the evaluation key 𝑒𝑘 output from 𝑆𝑒𝑡𝑢𝑝 and an input 𝑥
from the domain specified by 𝑒𝑘. It then outputs a new (deterministically calculated) value 𝑦 in the
range specified by 𝑒𝑘 and optionally a proof 𝜋 that 𝑦 is the correct output for 𝑥 with evaluation key 𝑒𝑘.
Note that 𝐸𝑣𝑎𝑙 must run in time 𝑡 for all valid inputs with any number of parallel processors polynomial
in terms of 𝑙𝑜𝑔(𝑡) and 𝜆.

𝑉𝑒𝑟𝑖𝑓𝑦: 𝑉𝑒𝑟𝑖𝑓𝑦 takes as its input four parameters: the verification key 𝑣𝑘 output from 𝑆𝑒𝑡𝑢𝑝, an 𝑥
from the domain specified by 𝑣𝑘, a 𝑦 from the range specified by 𝑣𝑘, and a proof 𝜋 that 𝑦 is the correct
output corresponding to input 𝑥 under verification key 𝑣𝑘. It outputs a Boolean value, whether the
proof proves 𝑦 is the output corresponding to 𝑥 under verification key 𝑣𝑘. Note that 𝑉𝑒𝑟𝑖𝑓𝑦 must run in
time polynomial in terms of 𝑙𝑜𝑔(𝑡) and 𝜆.

In order for these functions to together be a VDF, they must also satisfy the following properties:

Correctness: A VDF is correct if ∀𝜆, 𝑡, (𝑒𝑘, 𝑣𝑘), input 𝑥 ∈ 𝑋 specified by (𝑒𝑘, 𝑣𝑘), if (𝑦, 𝜋) is returned from
𝐸𝑣𝑎𝑙(𝑒𝑘, 𝑥), then 𝑉𝑒𝑟𝑖𝑓𝑦(𝑣𝑘, 𝑥, 𝑦, 𝜋) = 𝑇𝑟𝑢𝑒.

Soundness: A VDF if sound if for all algorithms 𝐴 that run in 𝑂(𝑝𝑜𝑙𝑦(𝑡, 𝜆)) time, 𝑃𝑟[𝑉𝑒𝑟𝑖𝑓𝑦(𝑣𝑘, 𝑥, 𝑦, 𝜋) 	=
	𝑇𝑟𝑢𝑒, 𝑦 ≠ 𝐸𝑣𝑎𝑙(𝑒𝑘, 𝑥)	|	𝑝𝑝	 = 	 (𝑒𝑘, 𝑣𝑘) is returned from 𝑆𝑒𝑡𝑢𝑝(𝜆, 𝑡) , and (𝑥, 𝑦, 𝜋)	 is returned from
𝐴(𝜆, 𝑝𝑝, 𝑡)] 	≤ 	𝑛𝑒𝑔𝑙(𝜆), where 𝑛𝑒𝑔𝑙(𝜆) is a negligible function of 𝜆.

Sequentiality: For functions 𝜎(𝑡) and 𝑝(𝑡) , a VDF if (𝑝, 𝜎) − 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 if no pair of randomized
algorithms 𝐴/, 𝐴! , where 𝐴/ runs in 𝑂(𝑝𝑜𝑙𝑦(𝑡, 𝜆)) and 𝐴! runs in parallel time 𝜎(𝑡) on at most 𝑝(𝑡)
processors, can win the sequentiality game with probability greater than 𝑛𝑒𝑔𝑙(𝜆).

Note that the sequentiality game for an adversary (𝐴/, 𝐴!) follows the below steps:

1. 𝑝𝑝 returned by 𝑆𝑒𝑡𝑢𝑝(𝜆, 𝑡)
2. 𝐿 returned by 𝐴/(𝜆, 𝑝𝑝, 𝑡)
3. 𝑥 returned by 𝑟𝑎𝑛𝑑_𝑐ℎ𝑜𝑖𝑐𝑒(𝑋)
4. 𝑦0 returned by 𝐴!(𝐿, 𝑝𝑝, 𝑥)

The Adversary wins the game if and only if 𝑦0 = 𝑦 where (𝑦, 𝜋) 	= 	𝐸𝑣𝑎𝑙(𝑝𝑝, 𝑥).

Implementation
Chia Network
The Chia Network is based on a longest-chain blockchain that uses Proof of Space and Time for its sybil
resistance [15]. Specifically, For Chia’s Proof of Time, they use a VDF server, known as a “Timelord," to
continuously evaluate the VDF for the honest end of the longest chain. The entire network can function
with only a single running Timelord, as only the fastest timelord will be used to mark the completion of a
block, although in practice additional Timelords do help with redundancy and security in the case that
other Timelords stop functioning or stop behaving honestly.

The block difficulty takes a form similar to that in Proof of Work, choosing a difficulty so that 32 blocks are
completed on average every 10 minutes. This difficulty is calculated based on the total amount of space
in the network and the speed of the fastest Timelord.

Tradeoffs
Energy Efficiency
The energy usage from Proof of Space and Time comes from three main sources: Storage manufacturing,
storage operation, and VDF calculation. Note that the first two are nearly the same as Proof of Space, as
the mechanism for storing data is the same. However, there is time between blocks honest due to the
VDF. This means that there will be fewer disk reads/writes per second, leading to slightly less energy
usage. The VDF calculation itself may seem as though it would be significantly energy intensive, as it
requires near-continuous running of CPU cores. However, the sequentiality property of the VDF
guarantees that the computation cannot be negligibly parallelized. Further, because only a single proof of
time must be submitted for a given block, which can be effectively performed off just a single VDF server,
the amount of energy does not necessarily scale as the coin price increases or the total space grows, so
any computation from VDF calculation is asymptotically negligible.

Validator Predictability
Thanks to the use of a VDF for block completion, a block must have its VDF be solved before being able to
use its resulting hash to predict the next validator. Because this VDF requires significant time to evaluate,

an adversary cannot predict future validators significantly faster than the proof of time would be
submitted.

Long-range Attacks
In a long-range attack, an adversary 𝐴 tries to generate a chain forked from the honest longest chain many
blocks ago. If 𝐴 has enough time and enough space to be successful, this could potentially invalidate a
large number of blocks on the previously longest chain. However, because it takes a significant amount of
time to complete adding any block to the blockchain, an adversary would not be able to add more blocks
to a long-range chain at a faster rate than blocks are added to the longest chain, meaning the attacking
chain will not catch up to the longest chain (with very high probability), rendering long-range attacks
ineffective.

Decentralization
For the same reasons as Proof of Space, Proof of Space and Time does not suffer from centralization in
the form of large cryptocurrency exchanges having a disproportionate amount of the stake. However,
there is still the potential for large farming pools to form, allowing a significant amount of the total
network space to be owned under a single pool.

Proof of Spacetime
Overview
Proof of Spacetime aims to achieve sybil resistance by using the scarce resource of not just instantaneous
storage, but storage over time. By requiring data to be stored over time, participants can make up for
lower amounts of total storage by increasing the time data is held, allowing for less energy to be expended
in the act of storing the data.

Mechanism
A Proof of Spacetime as defined in [14] is an interactive protocol between a prover 𝑃 = (𝑃*1*+ , 𝑃2324) and
a verifier 𝑉 = (𝑉*1*+ , 𝑉2324). The protocol takes place in two phases. Note each initialization phase may be
followed by multiple repetitions of the execution phase.

Initialization: Both 𝑃 and 𝑉 receive an input id bit string 𝑖𝑑. At the end of initialization, 𝑃 and 𝑉 output
state bit strings 𝜎' and 𝜎5 respectively.

Execution: Both 𝑃 and 𝑉 receive the 𝑖𝑑 from the initialization phase and their corresponding state. At
the end of execution, 𝑉 outputs a Boolean value 𝑜𝑢𝑡5 representing whether 𝑉 has accepted the input
and state.

Any such protocol of the above form must have the following properties of 𝜂 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 and 𝑓 −
𝑠𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 in order to be a (𝑤,𝑚, 𝜖, 𝑓) − 𝑃𝑜𝑆𝑡:

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠: A PoSt of the above form is 𝜂 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 if for every 𝑖𝑑 ∈ {0, 1})678(:) and every
random oracle 𝐻<6=:,

𝑃𝑟�𝑜𝑢𝑡5 = 1�(𝜎' , 𝜎5) ←< 𝑃*1*+(*>), 𝑉*1*+(*>) >, (•, 𝑜𝑢𝑡5) ←< 𝑃2324(𝑖𝑑, 𝜎'), 𝑉2324(𝑖𝑑, 𝜎5) >� ≥ 𝜂

𝑓 − 𝑠𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠: A PoSt of the above form is (𝜖, 𝑓) − 𝑠𝑜𝑢𝑛𝑑 if for all 𝑇/, 𝑇!, 𝑠 ≥ 0 and 𝑛 ≥ 1 for every
adversary (𝐴/, 𝐴!)	if it satisfies the following conditions in the (𝑛, 𝑠, 𝑇/, 𝑇!) − 𝑃𝑜𝑆𝑇	𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦	𝐺𝑎𝑚𝑒:

- Rational Storage: If 𝐴/ made fewer than 𝜖 ⋅ 𝑤 queries to the random oracle, then the probability
of success negligible in the security parameter (at most 𝑛𝑒𝑔𝑙(𝜆))

- Space-Time Trade-Off: 𝑃𝑟[(𝐴/, 𝐴!)	wins	(𝑛, 𝑠, 𝑇/, 𝑇!) − 𝑃𝑜𝑆𝑇	𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦	𝐺𝑎𝑚𝑒] 	≤
	𝑓(𝑛, 𝑠, 𝑇/, 𝑇!)

Note that the (𝑛, 𝑠, 𝑇/, 𝑇!) − 𝑃𝑜𝑆𝑇	𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦	𝐺𝑎𝑚𝑒 is defined as 2 phases:

Initialization: 𝐴/ chooses a set of bit-string ids {𝑖𝑑!, … , 𝑖𝑑1}. 𝐴/ then interacts with 𝑛 independent,
honest verifiers executing the initialization phase of the PoSt protocol, sending each id to the
corresponding verifier. 𝜎0 is the resulting output of 𝐴/, and (𝜎5!, … , 𝜎51) are the outputs of the
verifiers.

Execution: 𝐴! interacts with 𝑛 independent, honest verifiers executing the execution phase of the PoSt
protocol, where each verifier 𝑖 gets (𝑖𝑑* , 𝜎5*) as input.

The adversary (𝐴/, 𝐴!)	succeeds iff |𝜎0| ≤ 𝑠, 𝐴/ makes at most 𝑇/ queries to the random oracle, 𝐴!
makes at most 𝑇! queries to the random oracle, and all 𝑛 verifiers output 1.

Implementations
Spacemesh
Spacemesh is a consensus protocol that uses a “mesh” rather than a “chain” with PoSt for sybil resistance
[13]. The “block-mesh” architecture allows for the creation of multiple blocks in parallel rather than a
sequence of single blocks as in a typical blockchain. Because of this, individual miners are able to
contribute blocks without having to participate in a pool.

The proof of spacetime takes place in two phases. First, a miner “commits” to the data to be stored,
occupying 𝑆 bits. After this, the miner continues to prove that this data is still being stored by supplying
additional proofs over the time 𝑇 that the data is stored.

Tradeoffs
Energy Efficiency
The energy usage from Proof of Spacetime comes primarily from the initial computation in the
initialization phase and the energy cost of storage over time. As participants in the network can simply
increase the time they store a given amount of data, the energy from the initialization phase becomes
negligible as the time stored increases. In the analysis of proof of replication below, we give estimates of
energy usage that are comparable to those of spacetime.

Decentralization
Centralization varies implementation to implementation. For reasons similar to Proof of Space and Proof
of Space and Time, centralization of storage may be moved to pools, but with alternative implementations
like Spacemesh, decentralization through both easy-to-access hardware and easily-mined blocks can be
made possible.

Proof of Replication

Overview
Proof of Storage can be considered a generalization of Provable Data Possession (PDP) and Proof-of-
Retrievability (PoRet), which were both independently introduced prior to 2008, and discussions of these
schemes fall out of scope for this paper but can be found in [1,2]. Proof of Replication (PoRep) extends
these to include additional properties which ensure that the data is given its own unique physical location
(i.e., that it has been replicated by the server/prover). Proof of Replication was proposed as a novel Proof
of Storage implementation in 2017 as a way to combat the attack vectors which prevent PDP or PoRet
from being used as a sybil resistance mechanism for Nakamoto consensus. This scheme was first proposed
in [3] at Protocol labs, and as we will see below, forms the thesis of some blockchain projects.

We first discuss the issues/attack methods which PoRet resolves, as laid out explicitly by the creators:

“Sybil Attacks: Malicious miners could pretend to store (and get paid for) more copies than the
ones physically stored by creating multiple Sybil identities, but storing the data only once

Outsourcing Attacks: Malicious miners could commit to store more data than the amount they
can physically store, relying on quickly fetching data from other storage providers.

Generation Attacks: Malicious miners could claim to be storing a large amount of data which
they are instead efficiently generating on-demand using a small program. […]” [3]

Note that while Sybil attacks must be dealt with in any permissionless consensus method, the outsourcing
and generation attacks specifically arise when storage is used as the arbiter of stake in a system. In the
generation attack, collusion between a client and server can maliciously inflate the server’s relative
amount of storage in use in the total environment, unless the PoRep is publicly verifiable as well. I.e., if
the goal is to incentivize the network to store more user data, then the public verification of is critical to
the security of the network.

These additional three properties being fulfilled on top of the earlier PDP and PoRets allows for the use
case in which PoRep proofs to be submitted as a type of “proof of resource” allowing a network to
substitute PoW for these proofs, as we shall see.

Mechanisms
The original PoRep paper proposes an adversarial game RepGame that that a PoRep scheme “must pass
to be secure” and which formalizes the definition of PoRep schemes—the game essentially presents three
challenges, which we discussed above: Sybil Attack, Outsourcing Attack, and Generation Attack [3]. While
we will not repeat the entire details here, we will present a formal definition as it will be important context
for explaining how these are implemented in today’s cryptocurrencies.

“Definition: A general ∏ 	'6?2)
	 proving scheme ∏ 	'6?2)

	 =	 (𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜𝑣𝑒, 𝑉𝑒𝑟𝑖𝑓𝑦)	is a set of
algorithms that together enable a prover 𝒫 to convince a verifier 𝒱 that 𝒫 is storing a replica ℛ𝒟 of
data 𝒟. No two replicas ℛ*

𝒟, ℛB𝒟 can be deduplicated into the same physical storage; they must be
stored independently. The three algorithms are:

- ℛ𝒟 , 𝒮𝒫 , 𝒮𝒱 ← 𝑃𝑜𝑅𝑒𝑝. 𝑆𝑒𝑡𝑢𝑝(1E, 𝒟) where 𝒮𝒫 and 𝒮𝒱 	are scheme-specific setup variables
for 𝒫 and 𝒱 respectively, that depend on the data 𝒟, and on a security parameter 𝜆.
𝑃𝑜𝑅𝑒𝑝. 𝑆𝑒𝑡𝑢𝑝 is used to initialize the proving scheme and give 𝒫 and 𝒱 information they
will use to run 𝑃𝑜𝑅𝑒𝑝. 𝑃𝑟𝑜𝑣𝑒 and 𝑃𝑜𝑅𝑒𝑝. 𝑉𝑒𝑟𝑖𝑓𝑦. Some schemes may require either party
to compute 𝑃𝑜𝑅𝑒𝑝. 𝑆𝑒𝑡𝑢𝑝, require it to be a secure multi-party computation, or allow any
party to run it.

- 𝜋4 ← 𝑃𝑜𝑅𝑒𝑝. 𝑃𝑟𝑜𝑣𝑒(𝒮𝒫 , ℛ𝒟 , 𝑐), where 𝑐 is a challenge, and 𝜋4	is a proof that a prover has
access to ℛ𝒟 a specific replica of 𝒟. 𝑃𝑜𝑅𝑒𝑝. 𝑃𝑟𝑜𝑣𝑒 is run by 𝒫 to produce a 𝜋4	for 𝒱

- {0,1} ← 𝑃𝑜𝑅𝑒𝑝. 𝑉𝑒𝑟𝑖𝑓𝑦(𝒮𝒱 , 𝑐, 𝜋4), which checks whether a proof is correct. 𝑃𝑜𝑅𝑒𝑝. 𝑉𝑒𝑟𝑖𝑓𝑦
is run by 𝒱 and convinces 𝒱 whether 𝒫 has access to ℛ𝒟” [3]

While the authors leave implementation details open to various schemes, they make two design decisions
which are currently employed in at least one major blockchain, Filecoin [4]. Firstly, to prevent the Sybil
Attack, the provers use an encoding key for each replica, such that encodings of replicas of the same data
are distinguishable. I.e., for 𝑛 replicas, there are 𝑛 encoding keys. Formally, ℛ2:!

𝒟 ≠ ℛ2:$
𝒟 when 𝑒𝑘* ≠

𝑒𝑘B . Secondly, to prevent the Outsourcing Attack and Generation Attack, the scheme uses a time
bounding—essentially, force the encrypting/sealing to take time that cannot be sped up with additional
computing power, so that the prover could not generate a response on demand. Only an honest prover
with the sealed data already stored would be able to respond within the time window. The authors
formalize this such that in [3]:

𝒯F612G+ = 𝑅𝑇𝑇𝒱→𝒫→𝒱 + 𝑇𝑖𝑚𝑒 𝑃𝑜𝑅𝑒𝑝. 𝑃𝑟𝑜𝑣𝑒L𝒮,ℛ2:
𝒟 , 𝑐N¡ ≪	

	𝒯I++I4: = 𝑅𝑇𝑇𝒱→𝒫→𝒱 + 𝑇𝑖𝑚𝑒L𝑃𝑜𝑅𝑒𝑝. 𝑃𝑟𝑜𝑣𝑒(𝒮, 𝐸𝑛𝑐𝑜𝑑𝑒(𝒟, 𝑒𝑘), 𝑐)N

Thus, the choice for encoding becomes a critical decision. The original whitepaper from 2017 left this as
an open question, and we will discuss below the implementation choices which Filecoin has made in the
intervening years, and which type of encoding they now run. Broadly, the solution suggested is for the
encode to use some sort of pseudo-random permutation (PRP) and slow down the encode arbitrarily by
forcing the person encrypting to sequentially chain parts of the encoding some 𝜏 iterations. Decisions
about this method impact many things, including how the size of the data 𝒟 and the time to decode would
scale, allowing the encoding time to be tuned by some parameter so that if RTTs change or if data needs
to be retrieved faster or slower, the network could adjust this, as well as making sure it is not
compressible. Finally, within the domain of Decentralized Storage Networks, we would like this to be
publicly verifiable, so the encode would be within a SNARK/STARK scheme, and not prohibitive to
compute.

Tradeoffs
Within Distributed Storage Networks (DSNs), the term durability refers to the probability that data
remains available in the face of failures. There are multiple ways to try to ensure that data is not lost. In
the scheme described above, the data 𝒟 becomes unavailable if all provers with a replica ℛ𝒟 go offline

or leave the network. That scheme is at the heart of the Filecoin protocol, discussed more below.
Durability in this way can be thought of as the probability that all holders of the data simultaneously leave
the network before it is able to be repaired. In this context, if a user specifies they would like 𝑛 = 10
copies of their data made, then when one prover stops responding (and we assume they have left the
network), a new replica of the data is made on a new prover—in this way the network can be said to be
self-healing.

Durability is used as one metric in which DSNs are measured against. However, durability is also linked to
network bandwidth usage and network expansion factor, which is again defined for DSNs as the storage
overhead for storing some amount of data with a durability above some accepted tolerance. Perhaps the
single largest tradeoff for using PoRep is that expansion factor scales linearly with the number of replicas
required. If the user requires a high degree of probability that the data will not be lost—say, 10 copies,
this corresponds to a 1000% expansion factor. The argument against replication here is that there are
much more efficient ways of distributing data such that the expansion factor and consequent overhead
can be minimized without sacrificing durability.

Erasure codes offer one alternative. This is “an encoding scheme for manipulating data durability without
tying it to bandwidth usage, and have been found to improve repair traffic significantly over replication.
Importantly, they allow changes in durability without changes in the expansion factor.” [4] The details of
erasure code history within distributed and peer-to-peer storage systems falls outside the scope of this
report, but they have been around since and as a product of Reed-Solomon [5]. Erasure codes depend on
two variables (𝑛, 𝑘) where 𝑛 is the total number of erasure shares created, and any 𝑘 are required to
recreate 𝒟. The authors of the Storj DSN whitepaper model durability for erasure codes as a CDF of the
Poisson distribution, where 𝑝 = 10% churn rate/prover loss every month, and 𝜆 = 𝑝 ⋅ 𝑛 the amount of
erasure shares lost in a month for some data 𝒟. Then

𝑃(𝒟) = 𝑒JE ¥
𝜆*

𝑖!

1J:

*K/

From this we can see that in order to provide the same level of durability, erasure codes lead to much
lower expansion rates in comparison with full replication, and direct the reader to [4] for further
assumptions and arguments about durability/expansion factor interplay. They argue that lower expansion
factor leads to storage nodes being paid more, with high expansion factors “dilut[ing] the incoming funds
per byte across more storage nodes…a much more direct passthrough of income to storage node
operators.” PoRep cannot use such erasure codes since “the PoRep mixes all the input data in a way that
loses the erasure coding property.” [A]

Implementations
Filecoin
The Filecoin whitepaper in 2017 proposes itself as a DSN which “works as an incentive layer on top of
IPFS” where the native protocol token is earned by providing storage to clients [6]. More specifically, their
specifications are for the “probability that the network elects a miner to create a new block…is
proportional to their storage currently in use in relation to the rest of the network." Filecoin uses a
modified PoW where miners submit PoSts onto the blockchain—each of these proofs of spacetime are
sequential proofs of replications, as modeled above. The security of the consensus and the network thus

depend on the security of the PoSt, in which they “cannot lie about the amount of assigned storage they
have…since this would require time fetching running the slow PoSt.Setup and they cannot generate proofs
faster by parallelizing the computation, since PoSt.Prove is a sequential computation.” Their modified
Proof of Storage follows similar probabilistic leader election as in Algorand and Snow White.

Filecoin, as an L1 blockchain with its own native currency, has also added functionality via smart contracts
based on Ethereum’s model for users to program and modify the conditions on which they want to their
data to be serve, availability, and other tunable parameters. Their whitepaper also mentions ongoing
effort to create cross-chain bridges so that other blockchains like Ethereum and Tezos could take
advantage of the Filecoin storage system, as opposed to keeping data directly on Ethereum or Tezos,
where storage capacity is more expensive. As of today, it appears that such a bridge was recently
completed via Polygon network [7].

Storj
It is interesting to look at the use case of DSNs and the different approaches that are possible, which
highlight the different design choices with respect to performance, decentralization, and transparency.
Storj is an application on Ethereum which offers the same service as Filecoin, but which does not have its
own blockchain. Storj acts as a trusted third party and performs the role of validator, checking that provers
(not technically miners in this scenario) maintain storage of the data they have committed to, and
rewarding them with their ERC-20 token. Their whitepaper mentions these checks are Proof of Storage-
based, but not as rigorous as the PoSt and PoRep in Filecoin, and Storj additionally chooses to use erasure
codes instead of full replication [8]. Here there is a clear tradeoff between transparency and efficiency, as
Storj claims to passing these savings from erasure codes and bandwidth reduction for data repair onto
the storage operators. Filecoin puts proof information and contracts between users and providers on the
public blockchain. Finally, Storj uses a Market Maker model, where the user directly pays the Storj
application (again lack of transparency in pricing) – whereas the more decentralized Filecoin uses a
matching model in which users and servers post their availability, and are freely paired in the Filecoin
market [6].

Comparisons
Energy Efficiency
Straightforward comparisons of energy usage and efficiency between PoRep and other alternatives are
inherently flawed by individual blockchain and consensus mechanism’s differing goals. A DSN has different
design goals than a strictly transactional blockchain. PoRep, when applied to a Nakamoto style longest
chain consensus mechanism, can be viewed as a type of Proof of Useful Work – under the assumption
that storing files is a more useful byproduct of incentivization by the blockchain than solutions to hashing
inequality, as in Bitcoin.

Additionally, comparisons are applicable to implementations, rather than to proof schemes.

However, Filecoin has released their internal methodology for their network’s energy consumption, as
well as data for the entire network, which allows us a sense of how much energy are they consuming and
where in the process that energy is being used [9].

They model the framework for on-chain energy consumption with the following equation:

𝑃 = (𝐴 ⋅ 𝑆𝑅 + 𝐵 ∗ 𝐶𝑎𝑝) ⋅ 𝑃𝑈𝐸

Where 𝑃=Power in Watts, 𝐴 is sealing/encoding energy constant in 𝑊ℎ/𝑏𝑦𝑡𝑒 [Note: this 𝐴 constant is
the variable discussed above which takes non-parallelizable time so that it forces the provers not to
generate the data on demand or fetch from elsewhere, see Mechanism section for more], 𝑆𝑅 is sealing
rate in bytes/hour, 𝐵 is the electrical power required to store data in 𝑊/𝑏𝑦𝑡𝑒, 𝐶𝑎𝑝 is capacity in bytes of
data stored, and 𝑃𝑈𝐸 is the Power Usage Effectiveness, which they define as “ratio of total electrical
power consumed to that consumed by IT processes," which they pulled from Database Center literature
to get estimates.

Since the sealing rate is the part unique to PoRep proofs, we focus on that. Filecoin estimates a value of
3.42 ⋅ 10J"𝑊ℎ/𝑏𝑦𝑡𝑒, and a storage energy of 3 ⋅ 10J!#	𝑊/𝑏𝑦𝑡𝑒 [10].

The below figure shows the total network energy usage estimate:

Figure 2: Filecoin Total Energy Used

This data shows they are consuming ≅ 150	𝑀𝑊 of energy, about !
L
	𝑜𝑟	50𝑀𝑊	of which is dedicated to

power the hard storage drives, and about 45	𝑀𝑊 of which is used to seal/encode data. This data is used
to store 14.9	𝐸𝑖𝐵 of data, as of today. While not only providing useful byproducts of the blockchain, a
recent analysis found that the “total energy consumption of the Filecoin network is comparable that of
similarly sized datacenters," which is a better comparison dimension and shows the relative efficiency of
the distributed system [11].

Conclusion
While Proof of Work and Proof of Stake remain the most common forms of sybil resistance, alternative
methods do have purpose and potential tradeoffs that may make them more or less desirable than PoW
or PoS for different applications. In all the methods detailed above, storage in some form is used as a
scarce resource. While other alternative sybil resistance methods do exist, these storage-based
alternatives seem to offer some of the best properties in terms of energy efficiency, positive externalities,
and decentralization.

References:
[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable data
possession at untrusted stores. In Proceedings of the 14th ACM Conference on Computer and
Communications Security, CCS ’07, pages 598–609, New York, NY, USA, 2007. ACM

[2] A. Juels and B. S. Kaliski, Jr. Pors: Proofs of retrievability for large files. In Proceedings of the 14th
ACM Conference on Computer and Communications Security, CCS ’07, pages 584–597, New York, NY,
USA, 2007. ACM

[3] Protocol Labs. Technical Report: Proof-of-Replication. https://filecoin.io/proof-of-replication.pdf

[4] Storj Labs. Storj: A decentralized Cloud Storage Network Framework https://www.storj.io/storjv3.pdf

[5] Jeff Wendling and JT Olds. Introduction to Reed-Solomon.
https://innovation.vivint.com/introduction-to-reed-solomon-bc264d0794f8

[6] Protocol Labs. Filecoin: A Decentralized Storage Network. https://filecoin.io/filecoin.pdf

[7] Yahoo. Filecoin and Polygon Deploy Interoperable Bridge to Expedite Web3 Development
https://www.yahoo.com/now/filecoin-polygon-deploy-interoperable-bridge-162000622.html

[8] Storj Labs. Storj: A Decentralized Cloud Storage Network Framework.
https://www.storj.io/storjv3.pdf

[9] Alan Ransil, Protocol Labs. Estimating Filecoin Electricity Consumption from On-Chain Proofs.
https://github.com/redransil/filecoin-energy-estimation/blob/main/methodology/filecoin-electricity-
methodology-paper.pdf

[10] Filecoin Energy Use Estimate Methodology. https://filecoin.energy/methodology

[11] Introducing the Filecoin Energy Dashboard. http://www.coin.one/article/25624

[12] H. Abusalah, J. Alwen, B. Cohen, D. Khilko, K. Pietrzak, and L. Reyzin, “Beyond hellman’s time-
memory trade-offs with applications to proofs of space,” Cryptology ePrint Archive, Report 2017/893,
2017, https://eprint.iacr.org/2017/893.

[13] I. Bentov, J. Loss, T. Moran, B. Shani. The Soacemesh Protocol: Tortoise and Hare Consensus… In..
Space https://whitepaper.io/coin/chia-network

[14] T. Moran, I. Orlav. Simple Proofs of Space-Time and Rational Proofs of Storage
https://eprint.iacr.org/2016/035.pdf

[15] B. Cohen, K. Pietrzak. The Chia Network Blockchain https://whitepaper.io/document/759/chia-
network-whitepaper

[16] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of space,” in Annual Cryptology
Conference. Springer, 2015, pp. 585–605.

[17] D. Boneh, J. Bonneau, B. Bünz, B. Fisch. Verifiable Delay Functions.
https://eprint.iacr.org/2018/601.pdf

[18] Martinho, Joao Vasco Estrela. "Efficient Proof-of-Space approaches for permissionless blockchains."

[19] Park, Sunoo, et al. "Spacemint: A cryptocurrency based on proofs of space." International
Conference on Financial Cryptography and Data Security. Springer, Berlin, Heidelberg, 2018.

Appendix:
[A]. Email Correspondence with Ben Fisch, Stanford, author of multiple papers on PoRep and VDFs
[https://web.stanford.edu/~bfisch/porep_short.pdf, https://eprint.iacr.org/2018/601.pdf]

