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1 Introduction

2021 is the year of roll ups and MEV for the blockchain world. The boom in
DeFI has lead to an increasing dissatisfaction pertaining to low block space/rate
and high gas fees on L1. This resulted in a large interest in L2 scaling solutions,
which move computation and/or data off-chain, posting only a small summary
of activity on L1 while still inheriting the security of Ethereum mainnet. Chains
like Arbitrum have already attracted significant volume and metrics like total
value locked (TVL) are expected to increase rapidly in coming months. In par-
allel to the growing emphasis on L2 technology, Maximal Extractable Value
[1] (MEV) has become a central topic of discussion on blockchain forums and
academic papers. Topics of debate range from whether MEV is inherently detri-
mental to the health of the blockchain ecosystem, to the feasibility of different
solutions designed to mitigate MEV. Since value which can be extracted at the
application layer provides incentive for consensus destabilization, it is important
to render MEV extraction transparent and measurable, at the very least. Based
on this observation, FlashBots, one of the foremost research groups in the space,
developed and released mev inspect.py, a tool which classifies transactions into
different MEV extraction models.

In this project, we study the marriage of these two topics: MEV on L2s. In
summary, our contributions are

1. Summarizing what is currently known about MEV, including main ex-
traction techniques, quantification techniques, and open challenges.

2. Modifying an MEV quantifyer tool to work with GETH traces, deploying
it on Optimism.

2 Background

2.1 Miner Extractable Value

Miner Extractable Value (MEV) [1] was first coined in 2019 by Daian et al
as a measure of the profit miners can make by arbitrarily reordering, includ-
ing, and excluding transactions within the blocks. In Eth1 miners are the only
party that can guarantee the inclusion of a transaction or an MEV opportunity
within a block, hence they are the ones that are supposed to collect the profit
[2]. However, in practice specific users, called searchers, also accrue MEV by
watching the mempool, analyzing blockchain data to detect MEV opportunities
and running bots that automatically submit the respective transactions. These
bots participate in Priority Gas Auctions (PGAs) in an attempt to frontrun
each other by incentivizing miners to execute their transactions first, which
subsequently increases the transaction fees that miners receive [1]. As a result,
miners still accrue a portion of the MEV. After the realization that any par-
ticipant (e.g., miners, searchers, bots) can extract MEV, MEV was renamed to
Maximal Extractable Value.

2

https://github.com/flashbots/mev-inspect-py
https://github.com/flashbots/mev-inspect-py


A lot of research has been done on MEV strategies on L1 ETH, with some
of the most common being the following:

1. Decentralized exchange (DEX) arbitrage: Searchers can leverage ineffi-
ciencies in DEXs that offer the same token at different exchange rates [2].
To do so, they can execute atomically in one transaction the following two
orders: 1) an order to buy the token from the pool with the low exchange
rate and 2) and order to sell the token on the pool with the high exchange
rate. To make sure that the orders will both either succeed or fail, they can
use a smart contract called proxy contract that executes multiple orders
atomically within a single transaction.

2. Cyclic arbitrage: Starting with Uniswap2 and the usage of Wrapped Ether
(WETH), it is possible to create pools between any two tokens with the
exchange rates of the pools not being constant [3]. Searchers -or in this
case arbitrageurs- can submit atomic cyclic transactions (a series of DEXs
that start and end with the same asset) to leverage the unbalanced ex-
change rates of the pools [4]. For example, an arbitrageur can submit
transactions to atomically exchange token A for token B, token B for to-
ken C, and then token C for token A to accrue MEV if the product of the
exchange rates is larger than the total amount of transaction fees.

3. Sandwiching: the sandwiching technique is a combination of frontrunning
and backrunning a DEX transaction [5]. Searchers are watching the mem-
pool to identify transactions that present profitable MEV opportunities by
having a significant impact on the price of an asset. After the identifica-
tion of such a transaction, called a victim transaction, their bots submit a
frontrunning transaction and a backrunning one to leverage the exchange
rates variance. For example, suppose that the victim transaction increases
the price of asset A. The bot will submit a frontrunning transaction to
buy A -that will slightly increase the price-, the victim transaction will
then move the price up even more and the backrunning transaction sub-
mitted by the bot to sell A will sell at a price better than the original.
Since most clients order transactions within the blocks according to their
gas fees, bots can do successful sandwich attacks with high probability by
adjusting the gas price of the transactions they submit.

4. Liquidations: the existence of lending protocols on L1 provides searchers
with MEV opportunities. Searchers are monitoring the mempool to detect
borrowers that can be liquidated and run bots that submit transactions
that aim to collect the liquidation fee [2].

MEV is a potentially consensus-destabilizing landscape. In particular, very
profitable MEV opportunities can lead to two different types of attacks: 1)
fee-based attacks [6], where miners fork blocks that include high MEV and
2) time-bandid attacks [5] where miners try to fork a large part of the chain
in order to levy past MEV. For this reason, it is important to mitigate the
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negative potential consequences of the known MEV strategies. Flahsbots [7]
is a research organization that focuses on shedding light on MEV to enable
searchers to capture MEV opportunities without being frontrun and mitigate
the negative externalities of MEV. Eskandari et al [8] have identified a number
of ways to mitigate front-running attacks on L1, which they classify as follows:

1. deprive miners of the ability to arbitrarily order transactions by enforcing
a specific ordering (transaction sequencing)

2. leverage cryptographic techniques (e.g., commit/reveal) to reduce the vis-
ibility of transactions and ensure confidentiality so that the searchers do
not have the necessary information to engage with frontrunning

3. redesign DApps to inherently eliminate ordering/time dependencies.

In the past months Layer 2s (L2s) have garnered a lot of attention since the
network congestion problem and the high gas fees on Ethereum have pushed
users to find more scalable and less expensive solutions. This growth in scala-
bility solutions built on top of a L1 has brought new challenges and increased
complexity in the potentially consensus-destabilizing MEV landscape. Many of
the L2s have been running only for a few months (e.g., Optimism, Arbitrum)
and hence, very little is known about the state of MEV on L2, the effectiveness
of the MEV strategies, and the vulnerabilities they exploit.

In L2s, centralized operators or sequencers receive transactions and can ac-
crue MEV by censoring, inserting their own, or modifying the true sequence
of transactions. A known way to mitigate this are MEV Auctions (MEVA) [9]
which redirect fees initially directed at miners back to the ecosystem by having
miners compete to become sequencers and having the funds go to the commu-
nity. However, this mitigating technique comes with its own shortcomings since
sequencers will have the incentive to extract as much MEV as possible in the
course of their short tenure. Chainlink has been developing Fair Sequencing Ser-
vices (FSS) [10, 11], a decentralized transaction ordering service that mitigates
MEV by decentralizing the sequencer and adding fairness and predictability in
the time-ordering of transactions.

2.2 Layer 2s

Rollups [12] are a L2 scaling paradigm that aims to solve the network congestion
problem by moving computation and state storage off-chain while keeping the
bare minimum of transaction data on chain. There is an on-chain smart contract
which stores the state root, i.e., the Merkle root of the state of the rollup, that
enables fraud detection. In rollups, the transactions are published in batches.
There are two types of rollups:

1. optimistic rollups that optimistically assume correctness until challenged
by on-chain fraud proofs [13]. After a batch is published, any party can
publish within a certain dispute period a fraud proof that shows that one
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the of the batch’s state transitions was invalid. If the proof is verified, the
invalid batch as well as the following batches will be reverted. While a
long dispute period results in a long finality window it can also act as a
mechanism against censorship attacks.

2. ZK rollups [13, 14] where every batch includes a validity proof -called ZK-
SNARK- that has been computed off-chain and proves the correctness of
the new state. ZK-SNARKS enable instant batch verification and hence
short finality time.

A sequencer [12, 13] is a party that is responsible for executing and storing on
L2 transactions submitted by users, and for submitting the state root of the
batch of the respective state transitions on L1. In L2, sequencers can be chosen
in multiple ways with the most common being the centralized sequencer, i.e., a
single operator that can submit batches. While this is an efficient solution, it
relies on a single actor for liveness and hence introduces centralization in the
L2s. One simple way to decentralize the sequencer would be to still use one
sequencer at a time but use a mechanism to rotate the sequencers. As discussed
in Section 2.1, sequencer auctions (e,g,, MEVA [9]) and FSS [11, 10] developed
by Chainlink can decentralize the sequencer and increase trust-minimization.

In optimistic rollups sequencers play a major role and factoring in that they
can introduce centralization into the system, it is important to understand how
they work. Users send transactions to the sequencer, who checks their validity,
executes them, and rolls the resulted state transitions up in a batch that will
submit on L1 for finalization. Since the sequencers are the actors that choose
the transactions that will be included in the next block, a concern that arises is
whether the sequencer can censor transactions and how can the liveness of the
system be ensured in case the rollup has a centralized sequencer that suddenly
goes offline. Sequencers are required to include users’ transactions in a block
within a time window called “forced inclusion period” [15]. If the sequencer
does not include some user transactions (called “forced transactions”) within
that period, the next L2 block will include only those forced transactions. This
mechanism -that is enforced via fraud proofs- essentially allows the users to
bypass the sequencer if needed and submit transactions directly to L1.

Optimism or Optimistic Ethereum is an EVM compatible L2 chain that uses
optimistic rollup with single round fraud proofs to increase Ethereum’s through-
put and decrease transaction fees [16]. As a result, the transactions submitted
by users are executed faster and with lower gas cost. In optimistic rollups, se-
quencers are responsible for rolling up transactions into batches that will then
submit to Ethereum. Optimism uses a single centralized sequencer that as dis-
cussed cannot censor user transactions. A key characteristic of Optimism is that
currently blocks include only a single transaction [17].

Another EVM compatible L2 solution that uses optimistic rollups -this time
with multi-round fraud proofs- to increase Ethereum’s capacity, scale dApps,
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and decrease transaction costs is Arbitrum [18]. Abtitrum used a centralized
sequencer, but it is currently exploring Chainlink’s FSS [11], a decentralized
transaction ordering solution that helps decentralize the sequencer and ensure
fair ordering by using decentralized oracle networks to collect transactions from
users, order them, and submit them to L1. An important characteristic of Ar-
bitrum that is related to MEV opportunities is that there is no mempool for
bots to frontrun. Of course, it is possible for mempools to arise in applications.

Polygon is an interoperability layer 2 solution that builds and connects Ethereum-
based blockchains [19]. It was designed to solve the problem of high gas fees
and increase transaction throughput while maintaining security. However, the
reduced gas fees resulted in Polygon facing bot-spamming attacks [20]. In or-
der for a frontrunning, backrunning, or sandwiching attack to succeed the bot’s
transaction needs to land right before or behind the victim transaction respec-
tively. Since users or bots cannot choose the ordering of their transaction, they
need to set the gas fees in such a way that the transaction will land in the
right place. Since the transaction costs at Polygon are low, the bots can engage
with the hit-and-trial method to spam the network with identical transactions
in hope that one of them will land in the right place. If the transaction lands
in another place, the bot will cancel the transaction to save gas. That means
that the chain will include multiple cancelled transactions that consume gas and
space but do not change its state.

3 MEV Inspector

In the introduction we argued for the importance to create tools that help us
better understand and quantify MEV. Rollups are gaining traction this year
and therefore it’s important to make them as transparent as possible from the
start. Ideally, they are where most of the application-layer volume will flow to
in the Ethereum ecosystem and therefore making them as trustworthy as pos-
sible is imperative. This is in accordance with the current vision of making the
Ethereum mainnet less congested and reducing it’s main use to becoming the
execution layer for scalability solutions.
To quantify the amount of MEV extracted on Ethereum mainnet Flashbots have
built mev-inspect-py. Mev-inspect-py categorises each transaction by comput-
ing the transaction traces and then if the transaction pattern fits with one of
the patterns identified as MEV it quantifies how large the extraction was and
adds it to a SQL database. As, unfortunately, happens with most codebases
we can’t take mev-inspect-py out of the box and implement it on other chains.
In order to understand the limitations and what to modify we will first provide
some information on the different Ethereum clients and how they implement
transaction traces. We will then discuss how mev-inspect-py works, the neces-
sary modifications implemented by the Marlin Protocol team to get it to work
on Polygon, and how we have gotten it to work on Optimism.
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3.1 Preliminary Knowledge

In order to understand how mev-inspect-py works and what the problem with
it’s initial implementations were we will briefly discuss Ethereum clients and
how they implement transaction traces.

3.1.1 Ethereum Clients

An Ethereum client is a piece of software built to communicate with other
clients, signing and broadcasting transactions, deploying smart contracts and
updating our local state.
Having multiple clients on which users can run nodes is central to keeping the
network decentralised, as it makes the network healthier and more resilient to
bugs on any one client. This is why recently, on December 14, 2021 the Ethereum
Foundation launched a Client incentive program [21] to reward different client’s
continuing to build. Different clients offer different implementations of features,
apis and storage of data which result in different tradeoffs and appeal to different
users. Currently, approximately 80% of the nodes on Ethereum run go-ethereum
[22], a client developed by a team within the Ethereum Foundation, which
is developed entirely in Go. The second most used client is OpenEthereum
(formerly Parity), which is run by 10% of nodes [22], and is written in Rust.
Erigon (5% of nodes [22]), which also spawned from the Parity client, is a new
client which has a more efficient implementation of its db structure.
To develop their clients most L2s have used forks of Geth. This is because Geth
is the most popular client on Ethereum and it’s codebase is transparent and more
easily modifiable. Polygon, which launched about a year before the Optimistic
L2s which we’ve looked at, forked Geth to develop its own client Bor. The
client can support the higher transaction throughput and the different consensus
algorithm that Polygon has. Arbitrum and Optimism have also developed forks
of Geth tailoring them to their specific needs.

3.1.2 Transaction traces

There are two types of Ethereum transactions: plain value transfer and con-
tract executions. Transactions that invoke an execution on a smart contract
will cause a state change in the Ethereum Virtual Machine (EVM). When an
Ethereum transaction is executed the clients will store the state change to the
EVM and any emitted events in the transaction receipts. However, there is no
way of getting more details on what contracts the transaction interacted with
and what were the results of these interactions unless we reexecute the transac-
tions, this is the information transaction traces give us.
Tracing a transaction requires requesting an Ethereum client to reexecute the
transaction with different levels of data collection and return it aggregated in
some way. Different clients will run transaction traces in different ways. The
original version of mev-inspect-py was developed with transaction traces in the
format that Parity clients (OpenEthereum, Erigon) follow. Parity traces return
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every single call made by the transaction with the input parameters and recipi-
ent address of the call. This is, in fact, all that is needed to classify a transaction
for MEV since by using ABI to decode calldata of known formats. We can get
transaction traces by calling the ‘track block‘ api endpoint on a Parity client.
Unfortunately, L2 clients have been developed with forks of Geth which trace
transactions slightly differently. The basic transaction trace that Geth produces
are raw EVM opcode traces. For every VM instruction, the transaction exe-
cution returns an entry with what the stack, memory and storage are at that
point in the execution. This is clearly a lot more information than we need.
To solve this problem the Marlin Protocol implemented a filter of the traces to
get an output that resembles that of Parity which, with some other necessary
modifications, can then run in mev-inspect-py.
To summarise, mev-inspect-py was initially developed to work with Parity-like
traces. However, the L2s which we considered have developed clients that are
forks of Geth. This means that in order to run the software we need to modify
the program to accept Geth traces by modifying the output of the filtered geth
traces to being equivalent with Parity traces.

3.2 mev-inspect

mev-inspect-py is a software created by Flashbots with the aim of identifying,
classifying and quantifying MEV on Ethereum with the aim of ”illuminating
the dark forest”. Before they developed this there was only anecdotal informa-
tion of how much MEV was being extracted on Ethereum and who the major
players were. mev-inspect-py works by analysing the transaction traces of each
Ethereum block, classifying them according to whether the transaction can be
classified as MEV, so whether the transaction is an arbitrage or liquidation and,
finally save all of these results to a sql database. We now give some clarifica-
tions on how mev-inspect works by looking at the function inspect block() which
classifies all transactions inside a block.

1. Along with the block we want to inspect we provide client endpoint and
a sql db to the function.

2. We then fetch all the information from the block which we will require
to classify. That is: transaction traces, transaction receipts and block
metadata (timestamp, miner, base fee)

3. Using the traces classify the traces for each transaction. The developers
created specs for each protocol / exchange that they wanted to analyse,
they included the ABI (application binary interface) for all functions that
could be called which could be included in a transaction with MEV (e.g
swap() for a uniswap pool). Then the software iterates through each trans-
action and checks whether the calls we identified when tracing correspond
to any of these specs. If the classifier is successful we save it.

4. The classified traces are then further refined to check for different types
of MEV: arbitrages, liquidations, punk snipes. For each of these we can
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calculate what the value generated by the transaction was and how much
profit was paid to the miner.

As we discussed, mev-inspect-py was initially implemented with Parity-like
traces. The modifications that the Marlin protocol implemented which we then
piggy-backed on to run it on Optimism. These modifications were mainly at the
tracing level, in order to make the Geth traces compatible with the mev-inspect
format they used filtered tracing and modified the output to complement.

Another important modification was made by the Marlin Protocol team to
be able to run mev-inspect-py on Polygon. The problem, as we mentioned in
the background section, is that Polygon blocks due to their low cost of failed
transactions are congested with transactions sent by bots wanting to backrun
transactions. This means that it’s very expensive to trace a block because not
only there are more transactions per block but block rate is around 1 second.
So to get around this problem they first filter using event logs from transaction
receipts. Since most actions taken by a bot like a Uniswap swap emit an event,
we can just filter for transactions which have that topic in their logs.

3.2.1 Running mev-inspect-py on Optimism

Although were able to piggyback on the work done by the Marlin Protocol team
to use Geth traces, we still needed to make some changes to successfully run
mev-inspect-py on Optimism. These were mainly due to the differences in the
Optimism clients and some bugs that were introduced in this new, less battle-
tested, version of mev-inspect-py with Geth traces. The changes we had to
make to mev-inspect-py:

1. Made some modifications to web3.py to support parsing of traces from
geth

2. Debugging of mev-inspect-py geth branch, especially due to incorrect use
of the Python asynchronous framework to successfully await calls to the
geth node

3.3 Running Nodes

In order to even attempt to run mev-inspect-py on Optimism and Arbitrum we
had to run our own nodes to access the tracing api modules. Unfortunately, at
this time, Arbitrum does not provide tracing of transactions. Since Arbitrum
transactions are run in the AVM which has some structural differences compared
to the EVM. We did run a node to test whether the event based method would
work but realised that ultimately we needed traces and our work on Arbitrum
was put on standby until the team Arbitrum team releases a tracing api.
We were, however, able to successfully ran an Optimism node and then run
mev-inspect-py on it. The work we had to here required a lot of trial and error
to be able to get the node to sync successfully.

9



4 Results

4.1 About The Data

The measure of the value of each transaction must be considered as an approx-
imation and not an exact value for the following reasons:

• We were only able to access hourly historical price data. Hence, in times
of extreme volatility, the value at the exact moment of transaction may
be quite far removed from the value we used.

• There is not objective value of a token at a given time. Leaving aside
stablecoins, which we have assumed to have a 1:1 peg with USD, other
common tokens like wrapped ETH do not have a clear market price. As
such, we can only use an estimate for the ”true” price. In our analy-
sis we pulled price data from CryptoCompare who aggregate price data
from several different sources. Again, in times of high volatility, there is
certainly room for disagreement about the true price of an asset.

4.2 Optimism

Optimism Geth tracing has been available since the 11 of November. We ran
our implementation of mev-inspect over the entirety of the chain from that date
(obtained from our own node). The results, at first, may be somewhat surpris-
ing. We only found four arbitrageurs and a meager total profit of $34K (almost
exclusively using ETH).
Some potential explanation for such low MEV could be the immaturity of the
network and the lack of volume and exchanges that come hand in hand with
that. It is possible that our script captured a small percentage of the total ar-
bitrage revenue. The strongest explanation, however, comes out when one digs
a little deeper. Up until today (17 December ’21), Optimism has reserved a
whitelist of accounts allowed to launch smart contracts on the network. Since
most arbitrage relies on an atomic group of swaps facilitated by a smart con-
tract, traditional arbitrage was nigh impossible up until recently.
The question then becomes how, in the absence of the ability to create contracts
for atomic arbitrage, any arbitrage took place. The answer lies in the contracts
which were already launched by the whitelist. Uniswap for example, maintains
a ”router” contract which facilitates swaps between multiple pools. Traditional
MEV searchers do not use the router because it is gas inefficient and conspic-
uous, rendering one vulnerable to frontrunning. All of the arbitrage found on
optimism ran through such routers.
Since routers are specific to exchanges, no inter-exchange arbitrage was possi-
ble. This is traditionally where most of the opportunity lies so we anticipate a
significant increase in arbitrage on Optimism in the weeks to come, as any EOA
is now able to launch a smart contract.
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4.3 Polygon

Our analysis is based on work done by Marlin Protocol, who supplied us with a
database of transactions identified as arbitrages along with the related increase
in token. The main reason we sourced this data from another party is that,
due to Polygon’s block size and rate, simulating and tracing transactions can
be executed at only slightly faster than the network speed, making this a very
expensive process (note: event-based tracing significantly improves this process,
but it still remains expensive). In order to complete the data supplied by the
team from Marlin, we needed to collect data from several API providers to 1)
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map token addresses to token symbols, 2) retrieve historical price data 3) map
block numbers to block hashes and then block timestamps.

Interestingly, almost half of the 3.7 million total revenue was generated in a
week, with 5.8 million coming in on a single day. After some digging, we found
that this spike in arbitrage revenue correlates with the collapse of Titan Token.
We hypothesise that the collapse of the token lead to a spike in price fluctuation,
opening up the opportunity for arbitrage.

The largest arbitrage revenue on Polygon came in at $726K on the 16th
of June. This is the same day in which 5.8 million profit was taken, the
largest recorded day. The majority of arbitrages started and finished in MATIC
(%63.7), followed by ETH (%20.6) and USDC (%15.3). It is unclear why these
tokens are chosen over others. The attraction of USDC is clear as a stable asset.
It may be that MATIC also has appeal for gas reasons as it is the native token
on Polygon. Other factors may include volume and volatility of the respective
tokens, but this remains an open question.

4.4 Comparison

Comparing the scale of arbitrage between Polygon and Optimism seems to be
a somewhat uninformative venture. Even accounting for the longer time period
over which arbitrage in Polygon was measured, arbitrage on Polygon is two or-
ders of magnitude greater than Optimism.

Scale being out of the question, we consider the efficiency of the arbitrageurs:

• Revenue per arbitrage opportunity on Optimism is approximately $22.61

• Revenue per arbitrage opportunity on Polygon is approximately $4.09

this significant difference can be explained by the high ratio of failed ot succeeded
arbitrage transactions on Polygon as explained in the background section. Since
gas on Polygon is so cheap, a trial and error method with very little filtering for
bad transactions leads to such a low return per transaction.

4.5 Conclusion

We set out to analyse MEV on L2 scaling solutions. In the process of doing so,
we ran multiple versions of Optimism and Arbitrum’s clients, spoke to multiple
well-known founders, downloaded a very large fraction of the Polygon chain and
accessed more API’s than we would like to remember. The conclusions were
not straightforward clean insights as one would hope for, but this is a feature
of such a new field. In a sense, we feel we have been too early. Arbitrum’s
tracing functionality is set to come out in the next few weeks and arbitrage on
Optimism has likely already picked up significantly in the last day since the
whitelist has been removed.
What we have done is learned that MEV profits are concentrated in a handful of
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tokens, that large events that cause extreme volatility like the collapse of Titan
Token contribute a disproportionate amount to total arbitrage revenues and
established a methodology through which future analysis of single-domain MEV
can be conducted. We plan to continue our analysis, setting up dashboards,
incorporating more forms of MEV and developing finer-grained insights as the
space develops.

5 Future Work

We have ported the MEV Inspector tool to work with GETH traces, deployed
it on Optimism, and analyzed results on Polygon (data courtesy of the Poly-
gon guys) and Optimism. There are two main limitations. First, the tool
only scrapes and classifies traces of a single blockchain, but we live in a multi-
chain world. For as long as multiple self-contained domains exists, the ordering
matters not only within chain but also between chains (Section 5.1). Second,
only arbitrages and liquidations are currently quantified. As the community is
reporting new forms of MEV which are long tail, more subtle, potentially appli-
cation specific, theory is struggling to keep up. To better characterise existing
MEV opportunities, predict novel ones, and design MEV mitigation strategies,
we first need to agree on a formalization of MEV (Section 5.2).

5.1 Cross Domain MEV

As this report is being written, someone has successfully performed an arbitrage
between Polygon and Ethereum, resulting in a profit of $16862.59 (Fig 3). It
involved two chains, three pools, three tokens, and the profit token was the same
one the trader started with but on a different chain. A quick browse through
a https://westerngate.xyz/ shows that cross-domain MEV opportunities is al-
ready very much here, and will only become more abundant as the number of
different domains as well as the volume/activity in each domain grows.

Cross domain MEV [23] exists due to the fact that different domains (e.g.,
L1s, L2s, side-chains, shards, CEXes) have different states, with exchanges
whose token pricing is computed using the domain’s states. The differing vol-
ume and activity levels on different domains containing pools of the same assets
creates arbitrage opportunities.

Whether MEV is bad or not, whether we should aim to eliminate/mitigate
it, and how much we can do so is still a topic of heated debate. However, most
people can agree that if MEV is around, it is better for

1. MEV opportunities to have a low barrier of entry.

2. Engagement in MEV extraction and competition does not have negative
externalities on the network.

3. MEV behaviour to be visible and accountable

The current state of affairs for cross domain MEV looks quite grim for 1) (Sec-
tion 5.1.1), 2) (Section 5.1.2), and 3) (Section 5.1.3)
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5.1.1 Higher Barrier of Entry

A single-domain arbitrage opportunity could be captured by a player with a
small capital investment completely at a fee using flash loans or partially cap-
tured with their own capital. In contrast, extending flash loans to the multi-
domain setting (i.e., lend on one domain, pay on another domain) is unclear.
Further, players could risk failed execution due to non-atomicity of the trade
and large cross domain delays.

Instead, the optimal MEV extractor would have a large reserve of the main
tokens (e.g.: WETH, MATIC, USDC) on multiple domains. As soon as an arbi-
trage opportunity presents itself, the agent could directly execute the arbitrage
path on their respective domains, bypassing the cost and delay of cross-domain
communication completely. This clearly has a lower operation cost than relying
on technologies like bridges along with a higher chance of success, which is why
platforms offering cross-domain arbitrage paths suggest this strategy1. In short,
cross domain MEV will have a higher barrier of entry.

5.1.2 Cross Domain Collusion/Sequencer Centralization

If cross domain arbitrage continues to be a highly profitable endeavor with lower
competition due to its high barrier of entry, sequencers from different domains
may become incentivized to collude with each other. While there are costs to col-
lusion (e.g., set up trust, social norms against colluding sequencers, etc.), profits
from cross domain arbitrage could outweigh these costs. Similarly, large poten-
tial payoffs could incentivize cross domain sequencer centralization. Controlled
by a single entity, the centralized cross domain sequencer could experience zero
collusion costs and maintain significant influence on the transaction ordering on
multiple domains at once by a capturing large arbitrage profits with much higher
success rates than competing single-domain/colluding multi-domain MEV ex-
tractors.

Currently, many domains with large volumes are controlled by a few (oc-
casionally centralized) sequencers, with only future plans of decentralizing se-
quencing. With arbitrage profits in the order of magnitude of Western Gate
leaderboard, large for-profit sequencers may already be incentivized to collude.
Cross domain arbitrages are here to stay, so if cross domain MEV is inevitable,
an important future direction is to see how we can make efficient and fair se-
quencer collusion trustless in order to avoid sequencer centralization.

5.1.3 Quantifying Cross-Domain MEV

MEV Inspector quantifies a lower bound on MEV on each chain by looking
at block traces and counting the profits when the traces matches the defined
liquidation or arbitrage models. This inherently limits the amount of MEV
discoverable and quantifiable by the models defined. For instance, if some MEV

1See https://westerngate.xyz/ → About → Q: How do I profit from this?
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Figure 3: Arbitrage between Polygon and Ethereum.

extraction occurs over the span of multiple transactions or blocks, this will not
be included in the final value we report.

Even if we kept expanding our set of models, there are still cases which can
never be quantified, such as when one entity owns multiple wallets. Without
making additional assumptions on how players use different wallets with differ-
ent public keys, it is impossible (as well as computationally infeasible) to cluster
public keys into players and track MEV based on players instead of public keys.
Different public keys on different domains is exactly why cross domain MEV
may also be more opaque than single-domain MEV.

5.2 Formalizing MEV

To have rigorous theory for MEV, we need to agree on a unifying definition
for MEV. Candidates for definitions of MEV seem to emphasize the following
properties:

1. Permissionless: MEV should be defined in terms of the least priviledge
actor inside the system. This captures the notion that these opportunities
can be extracted by anyone in the system, independent of their reputation.

2. Investment Capital Dependent: MEV should also be separated into
different tiers depending on how much capital a player starts off with,
where the difference in MEV between these tiers could give us a measure
of how high the barrier of entry is. In its simplest form, arbitrages require
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traders to provide some form of economic incentive to the miners (e.g., gas
fees, bundle payments, etc.), and this requires upfront capital. Another
level up in terms of costs as well as (potential) profits could be by running
a mining node or locking up stake in order to influence transaction orders.

3. Beyond Single-Block: More subtle types of MEV could occur over the
span of multiple blocks and/or domains.

4. Non-miner MEV: A blockchain ecosystem contains many different actor
roles, each with their own action space, which can be used to influence the
final block ordering (directly as a miner or indirectly otherwise) to extract
MEV.

Starting from a reasonable definition proposal [24], we can attempt to iterate
on it to achieve more properties which we want from the list above, similar to
[25]. Within a chain, the extractable value (EV) in the primary token of the
chain expresses the maximum value that can be extracted by a player p (with
block proposing rights) from a valid sequence of blocks (B1, . . . , Bk) of length
k could be defined as

EV (p,B, s) = max
(B1,...,Bk)∈B

b
(
p, s(B1, . . . , Bk)

)
− b(p, s) (1)

where B is a set of sequences of blocks, all of length k, s and s(B1, . . . , Bk)
are the state of the system before and after applying the k block sequence
respectively, and b(p, s) denotes the balance of p in the primary token in state
s. Babel et al. then defined MEV of player p to be p’s EV when B is the set of
all valid k sequence of blocks p can propose in state s

k −MEV (p, s) = EV (p, validBlocksk(p, s), s) (2)

Note that Eq. 2 does not achieve all of the properties listed above. First, it
depends on p, and therefore, p’s reputation. Instead, to get a permissionless
definition of MEV which does not depend on the player, we can take the mini-
mum MEV over the set of all possible players to get the value extractable by the
least priviledged player. Second, this definition lumps together MEV extractable
by any player regardless of their initial balance. Third, while the definition ac-
counts for multi-block MEV extraction, it does not account for multi-domain
MEV, or actions other than block proposal for MEV extraction. Finally, the
action space here is clearly in the block ordering, and doesn’t account for MEV
extractable by, say, traders.

Drawing from Obadia et al. and Salles, we can patch this definition up to
achieve the properties we want. To achieve the permissionless property, the
MEV should be a quantity independent of the player, which we can achieve by
taking the minimum MEV over all players. Instead, MEV should be dependent
on the investment capital of this least priviledged player to achieve the second
property. To go beyond miner MEV, we can use a generalized notion of action
spaces instead of just block sequences. Going beyond single block, we would

17



incorporate the sum of extractable values for some player over all domains as a
function of the actions they can take on all of these different domains together.
Putting it all together, a patched definition of MEV in some state s for any player
with a balance of at least K, a combined action space A(p) = A1 ∪ . . . An, and
combined balance B(p) = B1 ∪ . . . Bn over domains i ∈ [n] is

MEV (s;K) = min
{p∈P|

∑
b∈B(p)

b(p,s)≥K}
max

a1,...,an∈A(p)

{ ∑
b∈B(p)

evb(p, s, a1, . . . , an)
}

(3)
This definition seems to align well with our current understanding of MEV.

For instance, a larger combined action space A can only increase MEV. This
makes sense in light of our discussion about sequencer centralization (Sec. 5.1.2).
We can also understand fair consensus protocols or proposer-builder separation
as mechanisms for reducing the action space of certain players. We can also
articulate what is the ideal case for MEV if we can’t completely prevent it. For
example, we might want MEV to be close to a linear function of K, implying
low barrier of entry (since players with any amount of initial capital can extract
an amount of profit proportional to their investment).
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