
Foundations of Blockchains
Lecture #2: The Dolev-Strong Protocol

(ROUGH DRAFT)∗

Tim Roughgarden†

1 The Upshot

1. Our current goal is to identify assumptions under which there are state machine repli-
cation (SMR) protocols that satisfy consistency and liveness.

2. Assumption 1: the set of nodes running the protocol is fixed and known up front
(“permissioned setting”).

3. Assumption 2: All nodes have distinct public-private key pairs, with all the public keys
common knowledge at the start of the protocol (“PKI assumption”).

4. Assumption 3: Nodes share a global clock, and every message sent arrives at its desti-
nation within one time step (“synchronous setting”).

5. Assumption 4: There is an a priori known bound (“f”) on the number of dishonest
nodes. Such nodes can deviate arbitrarily from the intended protocol and are called
“Byzantine.”

6. A good way to coordinate nodes’ actions is to take turns as leaders.

7. Designing a fault-tolerant SMR protocol that satisfies consistency and liveness reduces
to designing a fault-tolerant protocol for a single-shot consensus problem, Byzantine
broadcast (BB).

8. In BB, there is a known sender node in possession of a private input.

9. A BB protocol satisfies agreement if it’s always the case that all honest nodes halt with
the same output.

∗©2021–2022, Tim Roughgarden.
†Email: tim.roughgarden@gmail.com. The preparation of these notes was partially supported by a seed

grant from the Columbia-IBM Center for Blockchain and Data Transparency.

1

10. A BB protocol satisfies validity if, whenever the sender is honest, all honest nodes halt
with output equal to the sender’s private input.

11. In the Dolev-Strong protocol for BB (from 1983), honest nodes engage in multiple
rounds of cross-checking in order to catch a Byzantine sender red-handed.

12. The Dolev-Strong protocol satisfies agreement and validity, no matter how big f is.

13. Many of the applications of SMR are useful only when a strict majority of the nodes
are honest.

2 Recap

The goal of this lecture is to design and analysis a consensus protocol that solves the state
machine replication (SMR) problem under a strong assumption about the underlying com-
munication network (known as the “synchronous model” assumption), meaning that the
protocol is guaranteed to satisfy both consistency and liveness. Recall the definition of the
SMR problem from Lecture 1:

1. There is a set of nodes responsible for running a consensus protocol, and a set of clients
who may submit “transactions” to one or more of the nodes.

2. Each node maintains a local append-only data structure—an ordered list of transac-
tions that only grows over time—which we’ll call its history.1

For us, “clients” represent users of a blockchain protocol, “nodes” refer to the machines
actually running the protocol, and a “transaction” would be something like a cryptocurrency
transfer or a smart contract function call.

Recall also that a protocol is, informally, a piece of code that is to be run by each of the
nodes to manage the local computation at and communication by the node. For the SMR
problem, we’re looking for a protocol that satisfies two properties, one a safety property (bad
things never happen) and one a liveness property (good things eventually happen).

Goal #1: Consistency. We say that a protocol satisfies consistency if no two nodes ever
disagree on the relative order of two different transactions. (Ideally they would stay perfectly
in sync, but we want to allow some nodes to fall behind as long as they eventually catch up
with the others.)

1Remember, the ordering really matters. For example, if two transactions try to spend the same coins
(an attempted double-spend attack, perhaps) it really matters which of them comes first in the history (the
second one will fail).

2

Goal #2: Liveness. Every transaction submitted to at least one node is eventually added
to every node’s local history. (For now, think of all transactions as always being valid and
eligible for inclusion.)

Satisfying either of these two properties along is trivial (why?); what’s hard is getting
both at the same time. So do there exist SMR protocols that satisfy both consistency and
liveness? Over the next few lectures, we’ll learn that the answer to this question depends
in interesting ways on what assumptions you make, for example on the reliability of the
communication network, the fraction of malicious or otherwise corrupted participants, and
whether or not any “setup” is allowed in advance of the protocol’s commencement. In
this and Lecture 7, we’ll see possibility results, which identify assumptions under which the
answer is yes (and provide a concrete SMR protocol that proves it). These two lectures
sandwich a number of impossibility results, which identify assumptions under which the
answer is “no” (and provide mathematical proofs of that fact).

3 Initial Assumptions (To Be Relaxed)

We’ll kick off this lecture with a bunch of assumptions, really more assumptions than we’re
comfortable with. It will then be pretty easy to see that there are protocols satisfying liveness
and consistency under these assumptions. Then we’ll work hard to relax those assumptions
one by one, leading to more sophisticated protocols that are more robust solutions to the
SMR problem. Here are four assumptions that will make the SMR problem quite easy to
solve.2

3.1 Assumption #1: Permissioned Setting

The first assumption is that the set of nodes responsible for running the protocol is fixed
and known upfront. That is, the protocol description itself can reference the specific nodes
that are going to be running it. (And because the protocol is deployed at every node, every
node then knows about every other node.) We’ll use n to denote the number of nodes. The
nodes have distinct (and a priori known) names; without loss of generality, those names
are {1, 2, 3, . . . , n}. Similarly, they have known and distinct IP addresses (and hence can
communicate with each other).3

Nearly the entire 20th-century literature about consensus protocols works in the per-
missioned setting, because that was a perfectly reasonable assumption for the motivating
applications at that time. For example, if IBM wanted to replicate a database seven times
in order to achieve very high uptime, they would simply buy seven machines and then run
a consensus protocol on this (a priori known) set of machines.

2These are in addition to our permanent assumptions (introduced in Lecture 1), that the Internet (semi-
reliable point-to-point communication) and cryptography (e.g., secure digital signature schemes) exist.

3This is called the “permissioned setting” because the only nodes that can run the protocol are those
given permission up front. By contrast, in a “permissionless” blockchain protocol like Bitcoin and Ethereum,
anyone can download some software from the Web and spin up a node at any time, without any registration.

3

To discuss blockchains (and Bitcoin and Ethereum in particular), we’ll eventually want
to graduate from the permissioned to the permissionless setting. But there are a number of
reasons to start with an in-depth study of the permissioned setting. For example, all the
impossibility results that we’ll be proving for the (easier) permissioned setting will apply
automatically to the (harder) permissionless case. Similarly, when brainstorming about a
permissionless protocol, it can be useful to first tackle the permissioned setting as a spe-
cial case (what would you do if you knew all the nodes up front?), and then bootstrap it
to the general case. Indeed, several high-profile blockchain protocols follow this approach,
effectively implementing a reduction from permissionless consensus to the permissioned con-
sensus.4

3.2 Assumption #2: Public Key Infrastructure (PKI).

You can think of the PKI assumption as an extension of the permissioned assumption—not
only do all the nodes know about all the other nodes (via their named and IP addresses),
but all the nodes also have distinct public-private key pairs, with all the public keys common
knowledge at the start of the protocol. (The private key of a node is known only to that
node itself.) Thus, every node begins the protocol in a position to verify signatures by all the
other nodes (by running the verification algorithm specified by the digital signature scheme).

The PKI assumption is stronger than assuming merely that cryptography exists—it also
requires that all the nodes somehow shared their public keys with each other. This is an
example of a trusted setup assumption, in that it asserts that a certain computation (in this
case, public key distribution) is done correctly in advance of the protocol’s commencement,
remaining silent on how this computation might actually happen.5

You can probably imagine various ways of approaching the problem of public key distri-
bution, but here we’re just going to take it on faith that it happened. Of the four assumptions
in this section, the PKI assumption might bother us the least, and we won’t really focus
on relaxing it (unlike the other assumptions)—if the biggest flaw with your protocol is that
it requires public key infrastructure, it’s probably a pretty good protocol. That said, some
blockchain protocols (including Bitcoin and the initial version of Ethereum) do not require
the PKI assumption.6

3.3 Assumption #3: Synchronous Setting

A crucial assumption in this and the next lecture is that we’re going to make a very optimistic
assumption about the behavior of the underlying communication network—formally, that

4See Lecture 12 for a deeper dive on this idea, in the context of proof-of-stake blockchain protocols.
5Trusted setup assumptions usefully factor a protocol design into two stages: (i) figure out how to carry

out the computation asserted in the trusted setup (e.g., do a Web search for “zcash toxic waste”); (ii) design
a protocol that works under the trusted setup assumption.

6Bitcoin and Ethereum make a different trusted setup assumption, namely that the protocol designers
didn’t pre-compute the genesis block (more on this later) [1].

4

protocols operate in what’s known as the synchronous model. You can think of this model
as making two sub-assumptions.

Shared global clock. The first, which maybe we could live with, is that all of the nodes
share the same global clock. That is, even without any communication, all the nodes always
agree on exactly what time it is. If we break time into time steps, such as intervals of
ten seconds, all nodes automatically agree on what time step they’re currently in. This
sub-assumption is not literally true in the real world (for example, due to clocks drifting at
different rates), but you can start imagining ways that you might approximate it in practice.

Bounded message delays. The second sub-assumption is the one that should bother us
a lot: totally reliable delivery of information across the communication network. Specifically,
we’ll assume that every message sent by one node to another at the beginning of some time
step t arrives at the intended recipient prior to the beginning of time step t+1. For example,
if time steps correspond to 10-second time step, messages sent at the 80-second mark are
all guaranteed to arrive before the 90-second mark. The model makes no other assumptions
about the order in which a node receives messages (e.g., messages that arrive in the same
time step might arrive in any order).

If your communication network is the Internet, this second sub-assumption might hold in
the best-case scenario of “normal operating conditions” (assuming a generous time length,
like 10 seconds), but it’s completely unreasonable if you’re worried about network outages
(which of course happen all the time in the Internet) and denial-of-service attacks (which
should certainly be expected if your protocol secures billions of dollars of value).

The synchronous baseline. When probing the guarantees that a blockchain protocol
offers, the synchronous model serves as a useful sanity check. A necessary condition for a
good blockchain protocol is that it works really well in the synchronous model—with minimal
other assumptions (e.g., on the fraction of corrupted nodes), it should guarantee consistency,
liveness, good efficiency, etc. (And this will be the case for the Dolev-Strong protocol de-
scribed in this lecture.) But you can’t stop there, as real-world blockchain protocols really
should be robust when the communication network in unreliable (e.g., due to a denial-of-
service attack). We’ll see in Lectures 4–5 that in this case, you can’t have it all—when under
such an attack, every blockchain protocol must give up consistency or liveness.

So, when you’re assessing a blockchain protocol, it’s your duty to ask how it handles the
stress test of a prolonged network outage or denial-of-service attack. Does it give up liveness?
Does it give up consistency? God forbid, is it a badly designed protocol that gives up both?

3.4 Assumption #4: All Honest Nodes

The final assumption is a ridiculous one, and we’ll start relaxing it in Section 5. But just
for the next section, let’s assume that all of the nodes running the protocol are honest. Here
“honest” is actually a description of nodes’ behavior, not of their (owners’) intent, and means

5

that the all the nodes run the intended protocol, correctly and without deviations or bugs.7

This assumption is way too strong even for those old-school applications from the 1980s.
For example, suppose IBM is running seven servers, each with a copy of a database. Once in
a while, one of those servers is going to go down, unable to continue following the protocol
(thus qualifying as “dishonest”).

In the next section we’ll get our feet wet by designing a consistent and live SMR protocol
under the all-honest assumption. The rest of this lecture develops a more complicated SMR
protocol that, under the first three assumptions above, satisfies consistency and liveness no
matter how many nodes stray from the protocol.

4 Solving SMR via Round-Robin Leaders

A lazy SMR protocol. Perhaps the laziest SMR protocol is the one in which nodes
never bother to communicate, which each node independently adding transactions to its
local history as it hears about them. This trivial protocol fails to solve the SMR problem
even under all four of the assumptions in Section 3. If every transaction submitted by a client
always arrives at exactly the same time at every node, then we’d be OK. But if a client only
submits a transaction to a subset of the nodes, or if network delays cause transactions to
arrive at different nodes in different orders (which is possible even in the synchronous model),
then consistency will generally be violated.

Coordination via rotating leaders The lazy protocol above highlights the need to coor-
dinate the nodes, so that they’re all aware of the same set of transactions (in some canonical
order). We’ll achieve that coordination through rotating leaders, repeatedly iterating through
the nodes in round-robin order. E.g., with 100 nodes with names {1, 2, . . . , 100}, node 7 will
be the leader in time step 7, time step 107, time step 207, and so on.

It is easy to implement the rotating leaders idea under the assumptions in Section 3.
Because we’re in the synchronous setting, there’s a shared global clock and all nodes always
agree (without any communication) on what the current time step is. Because we’re in the
permissioned setting, the set of nodes (and their names) is known in advance and thus every
node knows the round-robin order (and particular the time steps in which it is the leader).

The leader’s responsibility is to coordinate the nodes during that time step:

Prescribed Actions of a Leader Node

1. Collect together all the not-yet-included transactions that it has heard
about and orders them arbitrarily (e.g., in the order in which it heard
about them).8 (The empty set of transactions is allowed, if the node
doesn’t know about any new transactions.)

2. Send the ordered list of transactions to every other node.

7For this reason, what we’re calling an “honest node” is sometimes called “correct node.”

6

By the beginning of a time step t, because we’re working in the synchronous setting, every
node has received the list of transactions sent to it by the leader of time step t− 1. At this
moment in time, each node (including the leader of time step t − 1) is instructed by the
protocol to append this list to its local history.

So that’s the protocol. Nodes keep track of when they are the leader and broadcast
ordered lists of transactions during those time steps, and also continuously append such lists
to their local histories as they hear about them.

Formal proofs of consistency and liveness. Under the four assumptions in Section 3,
this simple SMR protocol gives us what we want.

Proposition 4.1 Under the assumptions in Section 3, the protocol above satisfies consis-
tency and liveness.

Proof: Let’s start with consistency, the safety property asserting that no two nodes ever
disagree on the relative order of a pair of transactions. This protocol satisfies this property
because all the nodes operate completely in lock step. At each time step t, the (honest)
leader of that time step sends exactly the same list of transactions to every node. By
the assumptions of the synchronous model, all these messages arrive prior to the start of
time t + 1. At the beginning of time step t + 1, all the nodes add these (identical) lists to
their local histories. Because nodes start with identical local histories (the empty list), by
induction, they remain in sync forevermore.

What about liveness? Suppose a client submits a transaction to at least one (and possibly
only one) node. Because every node is periodically a leader (once every n time steps, where n
is the number of nodes), eventually, a node aware of this transaction becomes the leader of a
time step.9 At that point, the (honest) leader will include the transaction in the transaction
list that it broadcasts to all the other nodes, �

Now that we’ve gotten our feet wet and have some initial experience with the design and
analysis of consensus protocols, let’s get serious and tackle the SMR problem without the
ridiculous all-honest assumption.

5 Faulty/Byzantine Nodes

An honest node is one that never deviates (intentionally or unintentionally) from the pre-
scribed protocol. Nodes that deviate from the protocol (whether by intent or by accident)
are called faulty.

What’s the appropriate model of a faulty node? That is, what types of deviations from the
protocol should we consider? This question has been studied extensively in the distributed

8This ordered sequence of transactions plays the same role as a “block” in a blockchain.
9What matters here is that every node is chosen as a leader infinitely often (with round-robin one way

of accomplishing this). For example, choosing each leader independently and uniformly at random—a key
component of permissionless consensus protocols (see Lecture 9)—also works fine.

7

computing literature. To give you some context, this section describes three different models
of faulty nodes, in order from most to least benign. If you’re not interested in the broader
context, feel free to skip to the third model (of “Byzantine” nodes), which is by far the most
relevant one for permissionless blockchain protocols (which, ultimately, will be our focus in
this lecture series).

Crash faults. A crash fault occurs when a node simply stops working at some point in
the protocol, as if someone pulled out the plug. In other words, the only deviation from the
protocol that we consider is, after some (crash) time t, the node no longer sends or receives
any messages (and up to time t it correctly follows the protocol).

You can imagine why researchers in the 1980s might have been fixated on crash faults,
for instance in our running database replication example (with IBM running seven machines
of its own, each with a copy of the database). When hardware failures are the main worry
(as opposed to software bugs, a faulty network, or malicious attack), crash faults are the
sensible ones to focus on.10

Omission faults. A more general type of a fault is an omission fault. Here, a faulty node
can deviate from the protocol by withholding any subset of the messages that it’s supposed
to send (but it never makes up phony messages that it’s not supposed to send). Omission
faults can be the result of bad actors, but they also arise more innocently from network
delays. For example, consider a protocol that is designed for the synchronous setting and
instructs nodes to ignore any messages that don’t arrive on time. Whenever a message is
delayed more than one time step by the communication network, that message is effectively
omitted (because it is ignored by its recipient). A crash fault is the special case of an omission
fault in which, after some moment in time, all future messages are omitted (whereas with
an omission fault some but not all may be omitted).11

Byzantine faults. With blockchain protocols that secure billions of dollars of value, you
really can’t afford to assume away possible deviations that a dishonest node might think of.

10The simple “rotating leaders” SMR protocol from Section 4 no longer satisfies consistency if it’s possible
for a leader node to crash while it’s only partway through broadcasting its list of transactions—in that case,
some nodes will receive the list and other won’t, with the former nodes adding the list to their local histories
and the latter adding nothing. If we assume that leader nodes can broadcast atomically—meaning they
must either crash before sending any messages at a given time step or after sending all the message at that
time step—then the protocol more or less continues to work. The statement of liveness would need to be
tweaked a little bit—to guarantee eventual inclusion of a transaction in all honest nodes’ local histories, it’s
important that the transaction is sent to at least one honest node. (If all the nodes that know about a
transaction have crashed, then obviously it will never get added to the remaining nodes’ local histories in
the future.) Consistency holds in this case because all honest nodes operate in lockstep—at each time step,
either they all add the list received from the previous time step’s leader (if that node hadn’t crashed yet) or
they all add nothing (otherwise).

11The simple “rotating leaders” SMR protocol from Section 4 no longer satisfies consistency if there’s
even a single omission fault. A faulty leader can sends its list of transactions to some but not all other nodes,
causing some but not all nodes to add this list to their local histories.

8

A Byzantine node is one that can deviate from the protocol in arbitrary ways.12 Distributing
computing researchers defined Byzantine faults in the 1980s even though they weren’t partic-
ularly worried about malicious actors (e.g., think of seven machines all bought and operated
by IBM).13 Why? Because of possible software errors (e.g., in the database implementation).
Unlike hardware failures (leading to crashes) and network delays (leading to omissions), it’s
completely unclear how to model a node that is running a buggy version of the intended
software. To avoid controversy and pursue the most general results possible, researchers
explored what can and cannot be done in the presence of Byzantine nodes, decades before
blockchains were a gleam in anyone’s eye.14

While Byzantine nodes can in principle throw out the protocol and do whatever they
want, you might want to think of their canonical strategy as to send contradictory messages
to different nodes. For example, in the SMR protocol in Section 4, if the leader is Byzantine,
it could send different lists of transactions to different nodes. As with omission faults (the
special case in which some nodes all receive the same list and the rest receive nothing), that
protocol does not satisfy consistency if there is even a single Byzantine node.

Assumption #4 relaxed: bounded number of Byzantine nodes. Byzantine nodes
can ignore your protocol and do whatever they want. A good protocol should allow the
honest nodes to achieve the desired functionality (e.g., consistent and live state machine
replication) despite the best coordinated efforts of the Byzantine nodes. The more of the
nodes are Byzantine, the more difficult this goal is to achieve. The sensible relaxation of our
previous “all-honest” assumption is that to assume some bound, denoted f , on the maximum
number of nodes that might be Byzantine. Equivalently, this relaxed assumption asserts that
at least n− f of the n nodes correctly follow the protocol. (The all-honest assumption is the
special case of f = 0, and our simple SMR problem does not satisfy consistency already when
f = 1.) You might want to think of n/3 and n/2 as canonical values of f . The parameter f
is assumed to be known up front (and hence the description of a protocol may depend on
its value). The identities of the (at most f) Byzantine nodes are not known up front. (If

12As always, we will assume that Byzantine nodes cannot break cryptography (e.g., by forging digital
signatures). This assumption is backed by math (and, admittedly, mathematical assumptions about the
computational complexity of the discrete log problem) and is therefore much more palatable than any
behavioral assumptions about what a malicious actor might or might not be willing to do.

13Why the terminology “Byzantine”? The city of Istanbul was, a long time ago (pre-Constantinople),
known as Byzantium. On account of all the power struggles and political intrigue that occurred there over
the centuries, the word “Byzantine” acquired the definition “of, relating to, or characterized by a devious and
usually surreptitious manner of operation.” Lamport, Shostak, and Pease [3] introduced the terminology in
their 1982 paper, though the story of a bunch of generals of the Byzantine army striving to achieve consensus
(on whether to attack at dawn) despite and handful of traitors amongst them. The name has stuck ever
since.

14This is another amazing tribute to abilities of theory and abstraction to reason about applications
that haven’t even been invented yet. Researchers in the 1980s defined Byzantine faults not because they
literally thought nodes running buggy software would act maliciously, but rather because they didn’t want
to commit to any specific model of software bugs. With blockchains (as in cryptography), the Byzantine
model is literally the one that most faithfully captures what protocol designers should be worried (attacks
by highly motivated and sophisticated actors).

9

they were, the protocol could simply ignore all their messages and effectively operate in the
all-honest setting.) Thus a protocol must work simultaneously for every possible coalition
of at most f Byzantine nodes.15

6 The Byzantine Broadcast Problem

Our simple rotating leaders SMR protocol achieves consistency and liveness when f = 0 but
not when f = 1. To achieve fault-tolerance, we need to come up with a more sophisticated
protocol. The good news is that we can keep the rotating leaders idea as-is (with nodes
taking turns as leaders, for example round-robin). There will be time steps in which the
leader is Byzantine, however, so honest nodes can not just naively believe whatever the
current leader tells them (as they do in our simple protocol)—intuitively, they should also
carry out some “cross-checking” to make sure they don’t get tricked into inconsistency. We’ll
abstract out this cross-checking functionality into a single-shot consensus problem that is
interesting in its own right, called the Byzantine broadcast problem. In the next section,
we’ll see that fault-tolerant state machine replication reduces to fault-tolerant Byzantine
broadcast—any solution the latter (single-shot) consensus problem can be combined with
the rotating leaders idea to solve the former (multi-shot) consensus problem.

Formally, in the Byzantine broadcast problem, one node is the sender and the other n−1
nodes are non-sender. (For us, the sender will correspond to the leader of the current time
step in a rotating leaders-type protocol.) The identity of the sender is known to all of the
nodes in advance (as is the case in the rotating leaders application). The sender additionally
has a private input v∗, which belongs to some set V . (For us, v∗ will be an ordered list of
transactions, and V will be all possible such lists.) By “private,” we mean that when the
protocol commences, nobody other than the sender knows anything about what v∗ is (other
than that it is some element of V).

What constitutes a “solution” to the Byzantine broadcast problem? Intuitively, we want
honest senders to be able to broadcast their private input to all the honest non-senders,
while also foiling a Byzantine sender who wants to trick honest nodes into inconsistency.
Formally, we’ll insist on three guarantees from a protocol:

Desired Properties of a Byzantine Broadcast Protocol

1. Termination. Every honest node i eventually halts with some output
vi ∈ V . (Informally, vi is node i’s best guess as to what the sender’s
private input v∗ is.)

2. Agreement. All honest nodes halt with the same output (whether or
not the sender is honest).

15By default, we’ll assume that the set of Byzantine nodes is static and remains the same throughout the
execution of the protocol. More general models and results are often possible but outside our scope.

10

3. Validity. If the sender is an honest node, then the common output of
the honest nodes is the private input v∗ of the sender.

Agreement is a safety property (playing a similar role as consistency), stating that that no
two nodes ever disagree on their outputs (even if the sender is Byzantine). Validity (cou-
pled with termination) is effectively a liveness property, stating that a good event (accurate
broadcast of the sender’s private input) occurs whenever the sender is an honest node. Ter-
mination and agreement by themselves are trivially achievable (with all honest nodes always
outputting a default value ⊥), and similarly for termination and validity (with an honest
sender broadcasting their private input to all nodes, and honest non-senders outputting
whatever they hear from the sender). As with the SMR problem, what’s challenging is
designing a protocol that satisfies both the safety and liveness requirements.

Because Byzantine nodes can throw away the protocol and/or their private input and
do whatever they want, it doesn’t make sense to apply any of these requirements to non-
honest nodes (e.g., they can choose to loop forever), nor does it make sense to require
anything other than agreement in the case of a Byzantine sender (a Byzantine sender can
undetectably pretend that its private input is something other than what it actually is).

7 SMR Reduces to Byzantine Broadcast

We singled out the Byzantine broadcast problem because any solution to it can be used as
a “black box” to solve the state machine replication problem (under the same assumptions,
e.g., with the same value of f). The idea behind the reduction is simple: use rotating leaders,
an in each iteration invoke a Byzantine broadcast subroutine, with the current leader as the
sender.16

A Reduction SMR to Byzantine Broadcast

Assumptions: synchronous (Section 3.3) and permissioned (Section 3.1)
setting with node set N = {1, 2, . . . , n}.

Given: a protocol π for the Byzantine broadcast problem that, when at
most f of the nodes can be Byzantine, satisfies agreement and validity and
always terminates in at most T time steps.17

Reduction:

1. At each time step 0, T , 2T , 3T , . . . that is a multiple of T :

16Many state-of-the-art blockchain consensus protocols are, at their core, based on such a reduction from
multi-shot consensus to single-shot consensus. Though, in modern blockchain protocols, the computations
in the different instances of single-shot consensus tend to be interleaved. One reason for this is efficiency
(pipelining, in effect). A second reason, which we’ll see in Lecture 7 in the context of the Tendermint
protocol, is that beyond the synchronous model (i.e., with unbounded message delays), delays may cause
some nodes to lag far behind and inadvertently work on stale instances of single-shot consensus.

11

(a) Define the current leader node using a round-robin ordering. (With
node 1 the leader at time step 0, node 2 the leader at time step T ,
and so on.)

(b) The leader collects together all the not-yet-included transactions
that it has heard about and assembles them into an ordered list L∗.

(c) Invoke the assumed subroutine π for the Byzantine broadcast prob-
lem, with the leader node acting as the sender and with the list L∗

as its private input.

(d) When π terminates, every node i appends its output Li in the
Byzantine broadcast problem to its local history.

This reduction is well defined—handed a protocol for Byzantine broadcast on a silver platter,
it builds a protocol for state machine replication. Because there is a shared global clock (one
of the assumptions in the synchronous model) and an a priori known set of nodes, all nodes
automatically know which node is the current leader. Because π terminates within T time
steps, each invocation of π completes before the next one has to begin. The resulting SMR
protocol is a generalization of the simple rotating leaders protocol in Section 4, with the
(non-fault-tolerant) step of taking the leader’s messages at face value with a (fault-tolerant)
Byzantine broadcast computation.

The reduction not only produces an SMR protocol—it also extends the safety and live-
ness guarantees of the Byzantine broadcast subroutine to the resulting SMR protocol (with
agreement and validity of the former implying consistency and liveness of the latter, respec-
tively).

Theorem 7.1 (SMR Reduces to BB) Under the stated assumptions, the SMR proto-
col produced by the reduction above satisfies consistency and liveness (with the same upper
bound f on the number of Byzantine nodes).

Proof: For consistency, we can argue that all the honest nodes proceed in lockstep, with
each appending the exact same ordered list of transactions in each iteration of the protocol.
(They all start with the empty local history and, by induction, would then remain perfectly
in sync forevermore.) Fix an arbitrary iteration of the SMR protocol. Because the Byzantine
broadcast subroutine satisfies agreement, its invocation in this iteration terminates within T
time steps (by assumption) and, whether or not the leader of iteration is Byzantine, with all
honest nodes outputting the same list L. Thus all honest nodes do indeed append to their
local histories the exact same list in each iteration.

For liveness, we need to slightly modify the statement of goal #2 in Section 2: every
transaction submitted to at least one honest node is eventually added to the local history of
every honest node. (The protocol can’t force Byzantine nodes to add anything to their local
histories, nor can it force them to report transactions that they may have heard about.) So

17If π’s guarantees require a PKI assumption (as will be the case in the Dolev-Strong protocol of Sec-
tion 10), then the resulting SMR protocol’s guarantees also require that assumption.

12

consider a transaction tx that a client sends to some honest node i. Because every node
acts at the leader of an iteration infinitely often, node i will eventually be the leader of some
subsequent iteration. In that iteration, if tx has not already been added to honest nodes’
local histories, node i will include it in its list L∗ of not-yet-executed transactions that it
knows about. Because the Byzantine broadcast subroutine satisfies validity and because the
leader/sender i is honest (with private input L∗), the subroutine terminates in at most T
time steps with all honest nodes outputting L∗. All the honest nodes then append this list
(and, in particular, the transaction tx) to their local histories. �

So, to produce a fault-tolerant SMR protocol, “all” we need to do is come up with a
fault-tolerant Byzantine broadcast protocol. But wait, how do we do that?

8 Intuition: The f = 1 Case

The impatient reader can skip straight to Section 10 to learn about the Dolev-Strong proto-
col, which is a highly fault-tolerant solution to the Byzantine broadcast problem (and hence
leads immediately to a fault-tolerant SMR protocol, via our rotating leaders reduction). But
remember that one of the main points of this lecture is to build up our muscles for designing,
analyzing, and having good intuition about consensus protocols. In that spirit, let’s first
think through how to use “cross-checking” to at least solve the Byzantine broadcast prob-
lem in the f = 1 case; in the equally instructive Section 9, we’ll see why our protocol doesn’t
work in the f = 2 case and why further rounds of cross-checking are necessary.

We already know a simple protocol that solves the Byzantine broadcast problem in the
f = 0 case (the sender broadcasts their private input, non-senders output whatever they
heard from the sender) and that it doesn’t work in the f = 1 case (a Byzantine sender could
send different messages to different non-senders, leading to disagreeing outputs). Intuitively,
honest non-senders should compare notes to check if they received consistence messages from
the sender. A wrinkle in this idea is that there may be a Byzantine non-sender who tries to
frame an honest sender by lying during the cross-checking phase.

Given that we’re working under the PKI assumption (Section 3.2), here’s maybe the sim-
plest way to implement the idea of “cross-checking” the messages sent out by the sender:18

A Simple Cross-Checking Protocol for Byzantine Broadcast

1. In the first time step, the sender sends its private value v∗ to all the
non-senders (along with its digital signature).

2. In the second time step, every non-sender i echoes the message mi it
received from the sender in the previous time step to all other non-
senders, adding its own signature to mi.

18Remember, this the is the protocol that honest nodes run. Byzantine nodes can deviate from it an
arbitrary ways.

13

3. In the third and final time step, each non-sender chooses the most fre-
quently referenced value in the messages it received from the sender and
other non-senders (breaking ties in some consistent way, such as lexico-
graphically). (The sender can simply output its private input v∗.)

Honest nodes can easily ignore messages that could only have come from a Byzantine node—
the hard part is dealing with plausibly deniable Byzantine behavior that, from the perspective
of any single other node, could also in some universe reflect honest behavior. For example,
an honest node can ignore any message received from the sender outside the first time step,
and any message received from a non-sender outside the second time step. If an honest
node doesn’t receive a message when it’s expecting one (e.g., due to a Byzantine sender who
remains silent) or receives multiple messages, it can carry on as if it received a message with
some canonical value, denoted ⊥ (e.g., the empty list of transactions).

This simple protocol is robust enough to withstand misbehavior by a single Byzantine
node.

Proposition 8.1 When f = 1 n ≥ 4, the simple cross-checking protocol above satisfies
termination, agreement, and validity.

Proof: The protocol obviously terminates, after three time steps. To argue validity, assume
that the sender is honest (otherwise, validity holds vacuously). The sender obviously out-
puts v∗, its private value. Each honest non-sender receives one vote for v∗ signed by the
(honest) sender (in the first time step) and at least one vote for v∗ echoed and signed by
another honest non-sender (in the second time step). (Because n ≥ 4 and f = 1, there is at
least one other honest non-sender.) An honest non-sender can receive at most one vote for a
value other than v∗ (from a Byzantine non-sender), so its majority vote computation in the
third step will output v∗.19

Moving on to agreement, we only have to worry about the case of a Byzantine sender.
(The validity argument above implies agreement in the case of an honest sender.) Because
f = 1, in this case, every non-sender must be honest and will therefore echo the message
received from the sender to all other non-senders in the second time step. Thus, at the
start of the third time step, all the non-senders have received exactly the same information,
namely the pool of all the messages sent out by the sender in the first time step. All non-
sender therefore carry out exactly the same majority vote computation and hence compute
the same final output (using here that in the event of a tie, all nodes tie-break in the same
way). �

The simple cross-checking protocol does not solve the Byzantine broadcast problem when
f = 2, however. Do you see why?

19Kudos if you see why (given the PKI assumption) a Byzantine non-sender is actually powerless to
contribute a false vote to an honest non-sender’s majority vote computation—this is a good foreshadowing
of what’s going on in the Dolev-Strong protocol in Sections 10–11.

14

9 A Bad Example with f = 2

A protocol robust to Byzantine faults must succeed for every possible set of strategies that
could be employed by Byzantine nodes, including “collusion” by those nodes (meaning co-
ordinated deviations from the intended protocol). In effect, the Byzantine nodes may as
well have secret and instantaneous communication channels amongst themselves. The next
example should make clear the power of such conspiracies among the Byzantine nodes.

Consider the simple cross-checking protocol of Section 8. Assume that the number n of
nodes is even at least 4. Assume that f = 2, with a Byzantine sender and one Byzantine
non-sender. We claim that there is a coordinated strategy for the two Byzantine nodes such
that the protocol fails to satisfy agreement (see Figure 1):

• In the first time step, the (Byzantine) sender sends a “0” (along with its signature)
to half of the honest non-senders (the set A in Figure 1) and a “1” (along with its
signature) to the other half (the set B). (The argument in the previous section shows
that this step along is not sufficient to break the protocol.)

• (The conspiracy.) Still in the first time step, the Byzantine sender sends two messages
to the Byzantine non-sender, one with a “0” (and its signature) and the other with
a “1”. (Alternatively, the Byzantine sender can send its private key to the Byzantine
non-sender, who can then create these two messages itself.)

• In the second time step, the Byzantine non-sender echoes the signed message with a
“0” to the nodes in A and the one with a “1” to the nodes in B.

Thus, each of the Byzantine nodes uses the canonical ploy of sending conflicting messages to
different honest nodes; the second step above defeats the PKI assumption and enables the
Byzantine non-sender to use such a strategy.

What do the honest non-senders output in the third time step? In the second time step,
each node of A will hear n/2 votes for ”0” (one from the sender, n/2 − 2 from the other
nodes of A, and the tie-breaking vote from the Byzantine non-sender) and (n/2) − 1 votes
for “1” (from the nodes of B). Each such node will therefore output “0.” Similarly, each
node of B will output “1,” violating agreement.

Three takeaways from this bad example:

1. Many seemingly good protocols are not robust to Byzantine faults, in large part because
Byzantine nodes effectively have the power to fully coordinate their deviations from
the intended protocol.

2. Even when a protocol is robust to Byzantine faults, the rich space of coordinated
Byzantine strategies can make it difficult to rigorously prove it.

3. It would seem with more than one Byzantine node, more that one round of cross-
checking is necessary. This is exactly what happens in the Dolev-Strong protocol in
the next section, in which every additional round of cross-checking enables robustness
to one additional Byzantine node.

15

Byzantine
sender

Byzantine
non-sender

A
(n/2)-1 honest
non-senders

(will output 0)

B
(n/2)-1 honest
non-senders

(will output 1)

0 and 1
(first time step)

0 (first
time step)

1 (first
time step)

0 (second
time step)

1 (second
time step)

echo messages
(second time step)

Figure 1: Illustration of a coordinated Byzantine strategy with f = 2 (Section 9). Whenever
a node sends or echoes a message, it adds its own signature.

10 The Dolev-Strong Protocol

This section describes a classic (from 1983) solution to the Byzantine broadcast problem (in
the permissioned and synchronous setting, and assuming PKI), due to Dolev and Strong [2].20

Coupled with the reduction in Section 7, this protocol gives a solution to the state machine
replication problem (under the same assumptions).

10.1 Motivation

Full disclosure: you’re not going to see the Dolev-Strong protocol mentioned very frequently
in blockchain whitepapers and discussions. One reason for this is the protocol’s heavy reliance
on the synchronous model, which is an overly simplistic model of a global communication
network like the Internet. A second issue is that the protocol always requires a number of
time steps linear in f (the maximum-possible number of Byzantine nodes), which is more
than one would like.

Nevertheless, there are several reasons to spend some quality time with the Dolev-Strong
protocol:

1. It’s one of the greatest hits of distributed computing. Just as it’s satisfying to expe-
rience first-hand famous works of art, so too with famous algorithms and proofs in
computer science.

2. It doesn’t take that long. The protocol description is short, and the proofs of agreement
and validity are clever but also short.

20A precursor to this protocol is due to Pease, Shostak, and Lamport [4].

16

3. It would be pedagogically unsound to jump straight into the relatively complicated
consensus protocols that form the basis of actual real-world blockchain protocols. Bet-
ter to gradually ramp up the difficulty of the setting and the complexity of solutions.
After spending some time getting comfortable in the relatively safe confines of the
synchronous model, we can climb the next mountaintop and design consensus proto-
cols that work well even under much weaker assumptions about the communication
network.

10.2 Convincing Messages

We need one definition before proceeding to the description of the Dolev-Strong protocol.
To motivate it, recall that in the simple cross-checking protocol in Section 8, non-senders
compare notes in an attempt to pool together all the messages that the (possibly Byzantine)
sender sent out in the first step—if any two of the messages sent differ, then the non-
senders can safely conclude that the sender is Byzantine, stop worrying about the validity
requirement, and achieve agreement by all outputting some canonical value (e.g., the empty
list of transactions). (And as we saw in Section 9, such pooling can be tricky to pull off
if there are Byzantine non-senders acting in cahoots with a Byzantine sender.) The next
definition establishes conditions under which an honest non-sender can accurately conclude
that a particular message was indeed sent by the sender to some node in the first time step.
(For convenience, for the rest of this lecture we number the time steps starting from 0.)

Definition 10.1 (Convincing Messages) A node i is convinced of value v at time step t
if it receives a message prior to that time step that:

• references the value v;

• is signed first by the sender;

• is signed also by at least t− 1 other distinct nodes, none of which are i.

For example, if node 7 receives at time step 3 a message with a vote for “0” that is signed
first by the sender (node 17, say) and also by nodes 23 and 29, then node 7 is convinced of
the value 0 by this message.21

10.3 Protocol Description

Here, finally, is the description of the Dolev-Strong protocol (i.e., the instructions carried
out by honest nodes):

21Think of the signatures as nested and therefore ordered (with the first signature the innermost one).
Signing a message m produces a signed message (m, s). That signed message can then be signed again
(perhaps by someone else) to produce the double-signed message ((m, s), s′), and so on.

17

The Dolev-Strong Protocol

Time step 0: the sender sends its private input v∗ (with its signature
attached) to all the non-senders, and outputs v∗.

Time step t = 1, 2, . . . , f + 1: if a non-sender i is convinced of a value v
by a message m received prior to this time step and had not previously been
convinced of v, the node adds its own signature to m and sends the resulting
signed message (m, s) to all other non-senders.

Final output: for each non-sender, if it is convinced of exactly one value v,
it outputs v; otherwise (having detected a Byzantine sender), it outputs ⊥.

The symbol ⊥ denotes some canonical value, such as the empty list of transactions. As
usual, f denotes the maximum number of nodes that might be Byzantine; recall that its
value is known up front, and indeed the protocol description replies on that knowledge.
The protocol obviously makes use of the PKI assumption (so that nodes can verify each
other’s signatures), and our analysis of it in Section 11 will depend crucially on the reliable
communication promised by the synchronous model.

Intuitively, time steps after the first represent the multiple rounds of cross-checking, with
each (honest) non-sender telling the world about any values that its newly convinced of.
Each non-sender is trying to catch a possible Byzantine sender red-handed by looking for
contradictory messages sent out by the sender at time step 0.22

Don’t let the brevity of the protocol description fool you, it’s really quite clever. This
should be come clear to you in the next section, where we’ll see short and sweet proofs that
the protocol satisfies both validity and agreement (in the synchronous model), no matter
how many of the nodes are Byzantine.

11 Properties of the Dolev-Strong Protocol

This section proves that, under assumptions #1–3 of Section 3, the Dolev-Strong protocol
is a solution to the Byzantine broadcast problem: it satisfies termination, validity, and
agreement. Termination is obvious from the protocol description; let’s see why the other two
properties hold, as well.

Theorem 11.1 (Validity of the Dolev-Strong Protocol) Under assumptions #1–3 of
Section 3, the Dolev-Strong protocol satisfies validity.

Proof: Assume that the sender is honest (as otherwise validity holds vacuously), with private
value v∗. The sender thus follows the protocol, sending out signed copies of v∗ to all the
non-senders at time step 0 and then terminating immediately. Because signatures can’t be

22When f = 1, the protocol is similar to but not the same as the simple cross-checking protocol in
Section 8 (the former resolves conflicting information by outputting a canonical value, the latter uses a
majority vote).

18

forged (by our standing ideal signatures assumption) and no one other than the sender knows
the sender’s private key, there will never be any other messages that include the sender’s
signature. Looking at the second criterion of convincing messages (Definition 10.1), we can
conclude that no honest non-sender will ever be convinced of any value other than v∗.

Are we done? Not quite. The worry is that some honest non-senders might get convinced
of nothing (and thus output ⊥, rather than v∗). This worried is unfounded. Because the
sender is honest, it sends out signed copies of v∗ to all non-senders at time step 0. Because
we’re working in the synchronous model, all of these messages will be received by their
recipients before the start of time step t = 1. These messages satisfy Definition 10.1—
because t = 1, no signatures other the sender’s are required—and so all honest non-senders
are convinced of v∗ already in time step t = 1. �

The argument for agreement is slightly trickier.

Theorem 11.2 (Agreement of the Dolev-Strong Protocol) Under assumptions #1–
3 of Section 3, the Dolev-Strong protocol satisfies agreement.

Proof: Assume that the sender is Byzantine (validity already implies agreement for the
special case of an honest sender). The plan is to prove that, when the protocol terminates,
all honest non-senders have been convinced of exactly the same set of values. If true, this
would imply agreement: the honest non-senders are either all convinced of the same single
value v (in which case they all output v), the same set of 2 or more values (in which case
they all output ⊥), or of no values at all (ditto).

So, suppose that an honest non-sender i gets newly convinced of a value v by a message m
received before the start of a time step t. We need to show that all other honest non-senders
also get convinced of v before the end of the protocol.

Case 1: t ≤ f . In this case, the timer has not yet gone off and i still has time to tell
its colleagues about v. Precisely, because i is honest, it follows the protocol and adds its
own signature to m and sends the resulting signed message (m, s) to all other non-senders.
Because we’re working in the synchronous model, every other honest non-sender j receive
this message prior to the start of time step t + 1. The signed message (m, s) is signed
first by the sender (because m was signed first by the sender) and also by at least t other
distinct nodes (because m was signed by at least t − 1 other distinct nodes, none of which
were i). If (m, s) includes j’s signature, then j must have been convinced of v at some earlier
point in time (honest non-senders only add their signatures to newly convincing messages);
otherwise, because (m, s) satisfies the criteria of Definition 10.1, j becomes convinced of v
at time step t+ 1.

Case 2: t = f + 1. In this case, i becomes convinced of v only as the game clock expires.
There is no time for i to notify its honest non-sender colleagues about its new conviction,
so the only hope is that i is late to the party and that everyone else independently became
convinced of v (perhaps at time step f + 1, or perhaps earlier). Next we’ll see that the
Dolev-Strong protocol uses as many rounds as it does exactly so that this hope is in fact
true.

19

For node i to become convinced of v for the first time at time step f + 1, according to
Definition 10.1, it must have received a message m with v and signatures from at least f + 1
different nodes (one from the sender and at least t − 1 = f from non-senders). Because at
most f of the nodes are Byzantine (by assumption), at least one of these signatures must have
been contributed by an honest (non-sender) node (node j, say). Because i received m prior
to the start of time step f + 1, j contributed its signature at some earlier time step t′ ≤ f .
(If you think about it, t′ must equal f .) Whenever an honest non-sender adds a signature
to a message, it broadcasts it to all other non-senders.The argument in Case 1 now applies
(with j playing the role of i)—i didn’t have time to notify all the other honest non-senders,
but j did. Thus, every honest non-sender is convinced of v by time step t′ + 1 ≤ f + 1. �

A good homework exercise is to convince yourself that Theorem 11.2 no longer holds if
you stop the protocol one round early, after time step f rather than time step f + 1. (What
would be the strategy for the Byzantine nodes?)

12 Discussion: How Big Can f Be?

Let’s conclude by observing a very unusual property of the Dolev-Strong protocol with
respect to the assumed upper bound f on the number of Byzantine nodes. As we noted, the
protocol description depends on f , and the protocol’s running time depends linearly on f .
Maybe this isn’t surprising—the more Byzantine nodes, the more challenging the problem
and the harder we expect to work. But does the protocol ever stop being correct?

Re-reading the proofs of Theorems 11.1 and 11.2, we see that both work no matter what f
is.23 This is very unusual in distributing computing, and we won’t see another result like it.
Much more commonly, protocols become incorrect (and sometimes consensus problems even
become unsolvable) once f crosses a certain threshold, such as n/3 or n/2.

Back to SMR. We should remember the reason we studied the Byzantine broadcast prob-
lem: protocols that solve it can be used as a subroutine (along with rotating leaders) to solve
the problem that we really care about, state machine replication (Section 7). Combining the
properties of this reduction (Theorem 7.1) with the guarantees of the Dolev-Strong protocol
(Theorems 11.1 and 11.2) shows that the resulting SMR protocol satisfies consistency and
liveness, no matter what f is.

Many applications of SMR only make sense, however, when there’s an honest majority
(i.e., when f < n/2). Imagine each node is maintaining a copy of a database, or a copy
of a blockchain. Think of a client who want to run a database query or check the current
cryptocurrency balance of an account. By consistency, all honest nodes will respond to such
a query with the exact same (correct) answer. Byzantine nodes might well lie and respond
to such a query arbitrarily. If a strict majority of the nodes are honest, a user can send their
query to all the nodes and take a majority vote of their answers to determine the correct

23If you think about it, the largest interesting value of f is n− 2; the agreement and validity properties
become trivial if f is n− 1 or n.

20

one. If there’s a 50/50 split of honest and Byzantine nodes, with the latter coordinating on
a fabricated alternative state of the database or blockchain, a client cannot know whom to
believe.

Looking ahead. Nodes running the Dolev-Strong protocol are contributing and verifying
digital signatures all over the place, crucially relying on the PKI assumption. Could there
be a different protocol for Byzantine broadcast that is equally fault-tolerant but does not
require in-advance distribution of nodes’ public keys? Next lecture is our first impossibility
result: a “hexagon proof” that shows that the answer is “no.” The existence of public-key
cryptography and the ability to carry out a trusted setup really matter!

References

[1] I. Abraham, A. Tomescu, and A. Yanai. Do Bitcoin and Ethereum have
any trusted setup assumptions? Decentralized Thoughts blog post. URL:
https://decentralizedthoughts.github.io/2019-07-18-do-bitcoin-and-

ethereum-have-any-trusted-setup-assumptions/, July 18 2019.

[2] D. Dolev and H. R. Strong. Authenticated algorithms for Byzantine agreement. SIAM
Journal on Computing, 12(4):656–666, 1983.

[3] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems, 4(3):382–401, 1982. URL: https:

//lamport.azurewebsites.net/pubs/byz.pdf.

[4] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
Journal of the ACM, 27(2):228–234, 1980. URL: https://lamport.azurewebsites.

net/pubs/reaching.pdf.

21

