
Foundations of Blockchains
Lecture #10: Selfish Mining

(IN PROGRESS)∗

Tim Roughgarden†

1 The Upshot

1. foo

2 Block Rewards

2.1 Blockchain Protocols with a Native Currency

Thus far, we’ve been studying possibility and impossibility results in consensus, the problem
of keeping a bunch of computers in sync despite network delays and misbehaving nodes.
In classical applications of consensus (e.g., a big company like IBM replicating a database
to achieve very high uptime), there’s no reason to think about the incentives of running
a node (the company just runs them all as part of its business). But in the vision of
permissionless consensus, nodes are arbitrary individuals, free to come and go as they please.
Why should anyone bother to help run the protocol? This question becomes particularly
acute with Nakamoto consensus (Lecture 9), in which nodes are expected to exert significant
computational effort to solve hard cryptopuzzles.

A second question you might be wondering about is: Why we haven’t mentioned cryp-
tocurrencies? Aren’t they the whole point of blockchain technology? While the stories of
blockchains and cryptocurrencies have been tightly intertwined thus far (and may continue
to be for quite awhile), fundamentally, the answer is no. As we’ve seen, it’s perfectly possi-
ble in principle to build consensus protocols (including permissionless ones) that don’t come
with a cryptocurrency.

Starting with this lecture (and through Lecture 13), we’ll focus specifically on blockchain
protocols with a native currency—meaning (digital) coins that are minted, destroyed, and

∗©2021–2023, Tim Roughgarden.
†Email: tim.roughgarden@gmail.com. The preparation of these notes was partially supported by a seed

grant from the Columbia-IBM Center for Blockchain and Data Transparency. These notes are a work in
progress; corrections and feedback are welcome.

1

tracked by the protocol itself—and the new challenges and opportunities that then arise.
We’ll have a lot to say about cryptocurrencies, but for this lecture we’ll focus quite narrowly
on using a native currency to answer the first question above: Why should anyone bother
to participate in a permissionless consensus protocol?1

2.2 Incentivizing Block Production Through Block Rewards

One convenient way to incentivize nodes to participate in a blockchain protocol is through
block rewards. For example, in Nakamoto consensus, you could imagine giving an econom-
ically meaningful reward (enough to cover depreciation, electricity, and opportunity costs)
to a node whenever it successfully solves a cryptopuzzle and proposes a block that winds up
on the longest chain.

Where might a blockchain protocol get an “economically meaningful reward” from? The
easiest solution is for the protocol to print the money itself (necessarily, in the only currency
that it controls) and dole out block rewards denominated in the native cryptocurrency.2 This
is precisely what happens in the Bitcoin protocol, for example—at the time of this writing,
the miner of a Bitcoin block that gets included in the longest chain gets rewarded with 6.25
BTC (which, at the time of this writing, is over $100K).3

Introducing incentives into any system (be it in web3, web2, or the real world) can lead to
counterintuitive and undesirable outcomes. Sure, block rewards encourage nodes to produce

1A brief look ahead: In Lecture 11 we’ll consider transaction fees, paid by end users in return for the
execution of their transaction by a blockchain protocol. There are advantages (and it is common practice)
to require transaction fees to be paid in a blockchain’s native currency (much as U.S. taxes can only be paid
using U.S. dollars). Specifically, Lecture 11 studies the design of transaction fee mechanisms, the component
of a blockchain protocol that determines which transactions get executed and with what transaction fee.
(Note that when demand for computation by a blockchain protocol exceeds its capacity, some transactions
must get excluded.)

The lengthy Lecture 12 covers a completely different use case of a native cryptocurrency, namely to enable
a Sybil-resistance mechanism different than (and in at least some respects superior to) the proof-of-work
approach we studied in Lecture 9.

Finally, Lecture 13 focuses on the economic security of blockchain protocols—roughly, the cost of acquiring
a majority or supermajority of the work/stake/etc. contributed to a protocol. We’ll see there the importance
to security of having a native currency with non-trivial real-world value.

(And of course, all of these reasons for a native currency are above and beyond Nakamoto’s original one
of creating a digital analog of physical cash.)

2Of course, whether such block rewards are economically meaningful depends on whether the going
market price for the protocol’s native currency is not too close to 0. Why that might or might not be the
case is a longer discussion, outside the scope of this lecture.

3Block rewards are arguably most natural in longest-chain consensus protocols, because each block is
produced unilaterally by a unique protocol participant. In a BFT-type protocol like Tendermint (Lecture 7),
each block is the result of a collaboration between a large number of nodes (one node to propose a block and
a supermajority to approve it). Accordingly, there’s a range of options for rewarding nodes in such protocols,
as will be discussed further in Lecture 12. (BFT-type protocols are typically coupled with proof-of-stake
Sybil-resistance. Proof-of-stake protocols generally also need to incentivize node participation, because such
participation typically requires devoting capital that could otherwise be used to earn interest.) In this lecture
we’ll narrow our focus to Nakamoto consensus protocols such as the Bitcoin protocol and the straightforward
block rewards outlined above.

2

blocks—but do they really incentivize nodes to follow Nakamoto consensus as intended?
That question will occupy us for the rest of this lecture (after a brief digression).

2.3 Digression: Block Rewards As Inflation

In the Bitcoin protocol, block rewards elegantly kill two birds with one stone. What motivates
nodes to run the protocol? Block rewards. Where does money come from in the first place?
Also block rewards. Thus block rewards solve both a microeconomic problem (specifying
the game theory around mining) and a macroeconomic one (specifying the monetary policy
for the protocol’s native currency).

The Bitcoin protocol is remarkable, and unlike typical modern blockchain protocols, in
that block rewards are literally the only way that Bitcoins (the currency) have even been
created. When the protocol was first deployed, there were zero Bitcoins in existence. When
the first block (following genesis) was mined (presumably by Nakamoto themself), 50 Bitcoins
(the block reward at the time) were printed into existence. Roughly 10 minutes later, when
the second block was mined (presumably again by Nakamoto), another 50 Bitcoins were
born. And so on, up until this very moment. Block rewards (and hence the inflation rate
of the Bitcoin cryptocurrency) are programmed to decrease over time, eventually reaching
zero a little over a century from now, leaving the world with 21 million and only 21 million
Bitcoins in existence.

This hard supply cap on the money supply seems to have been an important feature to
Nakamoto, perhaps as a reaction (and intended correction) to the money-printing used by
various governments for bank bailouts and other purposes during the Great Recession in 2008.
Some modern blockchain protocols embrace Bitcoin’s hard supply cap philosophy (with
inflation eventually going to 0), while others mimic the monetary policy of fiat currencies
(which typically allows for perpetual inflation to help drive growth).4 There is currently
little understanding as to which approach is “better,” or as to how the features and goals of
a specific blockchain protocol might inform the protocol’s monetary policy.

Hard supply cap or not, modern blockchain protocols generally launch with an “initial
distribution” of the native currency to the protocol’s various stakeholders, which may then be
further inflated over time (e.g., through block rewards). As you can imagine, much blood and
ink gets spilled over the details of the initial distribution, but generally speaking some goes
to the team that developed the protocol, some to investors, and some to the “community”
(in the last case, perhaps via “airdrops” to those who participated in or used preliminary
versions of the protocol).

2.4 Selfish Mining: The Perils of Misguided Incentives

Adding a native currency to a blockchain protocol solves some problems but also introduces
some new ones. Whenever you introduce new incentives into a system, and whatever your

4The inflation rates currently used by different major blockchain protocols also differ significantly, but
most lie in the 2-8% annual range.

3

intuition may be about what those incentives achieve, it’s important to take a step back and
ask: “Wait, what are people actually incentivized to do now that I’ve introduced this new
incentive system?”

In Nakamoto consensus, block rewards are intended to motivate the nodes running the
protocol to follow it as intended, meaning work to solve cryptopuzzles in order to extend
the longest chain with a new block (and, upon producing such a block, broadcasting it to
everyone else). But do block rewards motivate the nodes even more strongly to behave in
some other, unintended way?

With economically meaningful rewards, the traditional dichotomy between “honest” and
“Byzantine” nodes used in all previous lectures is no longer appropriate. There might be a
few honest nodes (that follow the protocol no matter what the incentives are, e.g. if run by
the founding team) and some Byzantine nodes (who only care about disrupting the protocol),
but in a permissionless system you must expect many participants to act in their own self-
interest and behave in whatever way maximizes their economic reward from the protocol. So
with block rewards in Nakamoto consensus, the right question to ask is: is honestly following
the protocol a profit-maximizing strategy for a node?

This lecture explains why the answer to this question is “no.” Specifically, we’ll see that,
in a range of scenarios, a strategy known as “selfish mining” can garner more rewards for
a node than obediently carrying out Nakamoto consensus as intended. While the attack
is somewhat specific to both longest-chain consensus (using forking attacks reminiscent of
Lecture 8) and proof-of-work difficulty adjustment (see Section ??),5 you should think of it
as a famous case study of the catch-22 faced by blockchain protocol designers. Such protocols
need incentives to encourage correct behavior by its participants, but even minor flaws in
their design can strongly encourage unintended (and undesirable) behavior.

3 How Can a Node Maximize Its Block Rewards?

For the rest of this lecture, let’s think specifically about Nakamoto consensus with a fixed
block reward that is given to each producer of a block on the longest chain.6 As a profit-
maximizing node, what you should you do?

The subtle issue: non-uniform orphaning rates. Your first thought might be, does it
really matter? After all, by the nature of proof-of-work sybil-resistance (under the random
oracle assumption), a node with (say) 10% of the overall hashrate can generate only 10%
(on average) of the overall blocks, which would seem to lead to a 10% share of the block
rewards.

The subtle point is that a node garners rewards only for the blocks it produces that wind
up on the longest chain—if it produces a block that gets orphaned, it gets no compensation

5This attack was analyzed back in 2013 when Bitcoin was more or less the only game in town, so the
focus on Nakamoto consensus should come as no surprise.

6Or, more precisely, of a block that is sufficiently deep on the longest chain (as quantified by the security
parameter k from Lectures 8 and 9).

4

for its efforts. If every node follows the protocol honestly, then the longest chain grows in an
orderly fashion, without any forks (for simplicity, assume that message delays are small and
so there are no inadvertent honest forks). Because every block ever created winds up on the
longest chain, producing 10% of the blocks overall means producing 10% of the blocks on
the longest chain and hence earning 10% of the overall block rewards. But could it be that
deviations from honest behavior could lead to different nodes getting their blocks orphaned
at different rates? This would be a problem, because nodes with higher-than-average orphan
rates would earn a lower-than-expected share of the block rewards.

Difficulty adjustment review. To make the potential issue more concrete, let’s page
back in some details about how difficulty adjustment works in Nakamoto consensus. Recall
from Lecture 9 that puzzle solutions are inputs x that—in addition to meeting various
formatting constraints—hash to something close to 0: h(x) ≤ τ , where h is a cryptographic
hash function like SHA-256 and τ is the difficulty threshold. The parameter τ is maintained
by the protocol, and is typically tuned to target a particular block rate (e.g., one per ten
minutes in the Bitcoin protocol).

Actually, the description above—the usual one that you’ll hear—is slightly misleading. In
typical Nakamoto consensus, nothing matters other than the blocks on the longest chain. In
particular, blocks off of the longest chain are ignored when adjusting the difficulty threshold.
For example, in the Bitcoin protocol, for every new batch of 2016 blocks on the longest
chain, the protocol uses those blocks’ timestamps to estimate the amount of time that elapsed
during their production. If, according to their timestamps, these 2016 blocks took more than
two weeks to produce, then τ is adjusted higher (making the cryptopuzzles easier). If the
latest batch of 2016 blocks took less than two weeks to produce, than τ is decreased (to make
the puzzles harder). (Why 2016? Because if the target is to have the longest chain grow by
one block on average every ten minutes, then you’re hoping to see 6× 24× 14 = 2016 blocks
in a two-week period.) The protocol does not differentiate between the case that these 2016
blocks were the only blocks created in that period (all winding up on the longest chain), and
the case that 4032 blocks were created during that time (with half on the longest chain and
half orphaned). The rate of overall block production is twice as fast in the second scenario,
but the rate of growth in the longest chain is the same either way.

Block rewards as a fixed-size pie. Block rewards, remember, are also doled out only to
the block on the longest chain (and not to any orphaned blocks). Thus by targeting a rate
of growth of the longest chain, Nakamoto consensus difficulty adjustment also targets a rate
of minting block rewards. In the case of the Bitcoin protocol, with the current block reward
of 6.25 BTC, the target is 12600 BTC per two weeks.

Because Nakamoto difficulty adjustment effectively prevents a node from manipulating
the size of the pie (e.g., 12600 BTC/fortnight), at least in the long run, a profit-maximizing
node should act to maximize the size of its slice. This means that the node should act to
maximize the fraction of the blocks on the longest chain that it produced, and therefore the
fraction of the (fixed-size) pie of block rewards that it earns.

5

Goal of a Profit-Maximizing Node

Maximize its fraction of the blocks on the longest chain.

You might hope that this pie gets split proportionally among the nodes according to their
hashrates. By the random oracle assumption, a node with 10% of the overall hashrate will
produce (on average) 10% of the blocks. Does this also translate to producing (on average)
10% of the blocks on the longest chain? Or could a particularly devious 10% node somehow
be responsible for 11% of the blocks on the longest chain?

Honesty is not the best policy! The key takeaway of this lecture, which is neither
obvious nor intuitive, is that a node in Nakamoto consensus can in many cases boost its
share of the block rewards by deviating from the behavior intended by the protocol. For
example, if a node has 10% of the overall hashrate and superior network connectivity, it
actually can guarantee itself 11% of the blocks on the longest chain (assuming that the other
nodes all follow the protocol honestly).

The types of deviations discussed in this lecture sometimes go by the name selfish mining.
The “selfish” part refers to the (realistic!) assumption that nodes are neither mindlessly
obedient nor Byzantine, but rather act in their own interest. “Mining” refers to block
production in proof-of-work blockchain protocols (with the loose analogy that trying lots of
different nonces is like digging for gold).7

For the game theory fans out there, this lecture’s key takeway can be summarized as:

In Nakamoto consensus, obediently following the protocol does not generally
constitute a Nash equilibrium.

A Nash equilibrium refers to an outcome of a game (i.e., a choice of strategy for each of
the game’s players) in which no one has an incentive to deviate unilaterally to a different
strategy. An outcome (like all nodes behaving as intended in Nakamoto consensus) is not a
Nash equilibrium, then, if one of the participants is better off (e.g., earning a larger share of
block rewards) by unilaterally changing its strategy. And this is exactly what we’ll show in
this lecture.8

Given that the Bitcoin protocol has been happily humming along for fourteen-plus years,
it would seem that selfish mining attacks are not exactly a fatal flaw; see Section ?? for a
detailed discussion of their practical implications. Primarily, you should interpret the results
in this lecture as a cautionary tale. Whenever you add incentives to a protocol, you may
well have strong intuition about why they incentivize participants to do what you want. But

7Sometimes you’ll see “selfish mining” refer more generally to deviations from intended behavior by a
block producer in a blockchain protocol. Our focus here is on the original and narrower meaning of term
(referring to a specific type of deviation in Nakamoto consensus, based on deliberate forks and delayed block
announcements).

8Reading between the lines in the Bitcoin white paper [?], it seems plausible that Nakamoto assumed
that honestly following the protocol would in fact be a Nash equilibrium (at least, under the assumption
that no single node has 50% or more of the overall hashrate).

6

more often than not, especially when there is a rich set of deviations available, your intuition
will be misguided and the incentives will encourage the most clever participants to behave
in unintended and undesirable ways.

Where we’re going. This lecture presents three versions of the takeaway above, each
more complex and compelling than the last. In all three versions, we’ll work in the “super-
synchronous” or “instant communication” model from Lecture 8, meaning that every mes-
sage will arrive at its destination immediately (as in the synchronous model with maximum
message delay ∆ = 0). This is, of course, an unrealistic approximation a real communi-
cation network. Back in Lectures 8 and 9, we were proving positive results (consistency,
liveness, etc.) about longest-chain consensus, and we adopted this assumption only tem-
porarily, for expository convenience. (Toward the end of Lecture 9, we outlined how to
extend those positive results to the general synchronous model.) In this lecture, by contrast,
we’re proving negative things about Nakamoto consensus and thus will work in the unrealis-
tic super-synchronous model with pride. We’ll prove that even if non-Byzantine nodes can
magically communicate with each other instantly, nodes are generally incentivized to deviate
from their intended behavior.

We’ll start by warming up in Section 4 with the extreme case of a node that controls
51% of the overall hashrate. Here, it will be relatively simple to understand how such a node
can benefit from deviating from honest behavior. While the node’s deviating strategy in
this case is relatively simple, it nevertheless carries the seeds of the more complex deviations
used in the other two scenarios.

In the second and third scenarios, we consider only nodes that have less than 50% of the
overall hashrate. The difference between the two scenarios concerns how honest nodes break
ties between multiple chains that are equally long. (Remember, in longest-chain consensus,
an honest node is allowed to extend an arbitrary longest chain.) First, in Section 5, we’ll
set things up to be as favorable as possible toward deviations away from honesty—when
a node contemplates a deviation, we’ll assume that it also gets to choose how the other
(honest) nodes break ties throughout the course of the protocol. This is not necessarily a
realistic scenario, but it is also hard to rule out—e.g., the deviation that we’ll describe could
be well approximated by a deviating node that has superior network connectivity under the
assumption that honest nodes break ties according to the block that they heard about first
(which is in fact the official tie-breaking rule of the Bitcoin protocol). In this scenario, we’ll
see that, no matter how little hashrate the deviating node has, if all the other nodes behave
honestly, then the node is better off mining selfishly than honestly.

Finally, in Section 6, we’ll consider the most realistic scenario, of a node with less than
50% of the overall hashrate that cannot control how the other nodes break ties among
competing longest chains. This setup is maximally unfavorable to a deviating node, and
indeed, nodes with sufficiently small hashrate are best off following Nakamoto consensus
honestly. If a node is big enough (at least roughly 33% of the overall hashrate), however, it
can overcome the losses from adversarial tie-breaking and improve over honest mining with
a sophisticated selfish mining strategy.

7

Punchline

The incentive-compatibility threshold of Nakamoto consensus (≈ 33%) is strictly
smaller than the security threshold (50%).

Here by “security threshold” we mean the upper bound that must be imposed on the fraction
of hashrate controlled by a non-honest node (or a cartel of such nodes) in order for Nakamoto
consensus to be consistent and live. By “incentive-compatibility threshold,” we mean the
analogous upper bound in order for honest behavior to constitute a Nash equilibrium.

4 A Profitable Deviation with 51% of the Hashrate

The setup. Let’s start with an extreme case in which it’s relatively easy to see why nodes
are not always incentivized to obediently follow Nakamoto consensus. In this section, we’ll
make the following assumptions:

1. All messages are delivered instantly (i.e., the super-synchronous model).

2. A deviating node can control how other nodes break ties among competing longest
chains.

3. There is a node A that controls (at least) 51% of the hashrate.9

4. Every node other than A obediently follows Nakamoto consensus.

The first assumption only makes our (negative) results stronger, so we’re happy to make
it. However we may feel about the second assumption, in this section we’re making it only
for simplicity. In the presence of the third assumption, it’s relatively easy to extend the
arguments in this section to the case where the deviating node A cannot control how other
nodes break ties (a good exercise for the reader). The third assumption is extreme, and
we’ll drop in both Section 5 (while retaining the second assumption) and Section 6 (while
also dropping the second assumption). The fourth assumption corresponds to our goal of
showing the honest behavior does not constitute a Nash equilibrium: even if all the other
nodes behave honestly, that honesty is not necessarily contagious.

You’d be right to object that, as we saw in Lectures 8 and 9, Nakamoto consensus doesn’t
have any desirable properties (such as consistency and liveness in the synchronous setting)
when a (possibly Byzantine) node controls at least 51% of the hashrate. Why should we care
about this case? In some ways we don’t, but as we’ll see, we’ll get very accurate intuition
about all the arguments in this lecture by studying this extreme case.

9In previous lectures, we used A to denote an “adversary,” which we thought of as a node that wanted to
interfere with the protocol. Here, node A is a humble profit-maximizer trying to maximize its block rewards,
not a Byzantine node per se.

8

Figure 1: A node with 51% of the hashrate can orphan every block every produced by the
other nodes.

Rewards earned by honest behavior. Node A always has the option of obediently
following the protocol. If it does so, because all other nodes honestly follow the protocol also
(by assumption) and all messages are delivered instantly (again, by assumption), the longest
chain will grow in an orderly fashion, without any forks. That is, every block produced winds
up on the longest chain. Because A has 51% of the hashrate, it produces 51% of the blocks
(in expectation) and therefore its blocks make up 51% of the longest chain (in expectation).

For example, if we focus on the Bitcoin protocol, with 2016 BTC allocated in a typical
two-week period, honest behavior will net node A 0.51 × 2016 ≈ 1028 BTC over the same
period (in expectation). Can node A do better?

Deviating to fully control the longest chain. A 51% node can, in fact, guarantee itself
100% of the block rewards! Thus, honesty is definitely not the best policy for such a node.

To control 100% of the blocks on the longest chain, node A must somehow manage to
orphan every block ever produced by any other node. How can it do this? Let’s see with
an example (Figure 1). Suppose we fire up Nakamoto consensus with genesis block B0, and
all nodes (both node A and all the honest nodes) start dutifully attempting to solve the
protocol’s cryptopuzzles. Node A, by virtue of contributing 51% of the overall hashrate, has
a 51% chance of producing the next block. But for this example, let’s suppose some honest
node gets lucky (which happens with 49% probability) and produces a block B1 that extends
the genesis block B0.

Block B1 is now the end of the longest chain, so the honest nodes will stop trying to
extend B0 and will start trying to extend B1 instead. Node A, however, is intent on forcing
block B1 out of the longest chain. (Remember, node A is shooting for 100% of the block
rewards, which entails preventing any other node from getting a block on the longest chain.)
The only way node A can orphan B1 is to create an alternative longest chain that excludes B1.
Thus, node A cannot work to extend B1, and must instead continue trying to extend the
genesis block B0.

Next, there’s again a 51% chance that node A is the next one to produce a block (ex-
tending B0) and a 49% chance that some other node is the next one to produce a block
(extending B1). For this example, let’s suppose that the latter happens again, with some
honest node producing a block B2 that extends B1. Honest nodes then switch to working to
extend the new end of the longest chain (i.e., B2).

9

Node A can work to extend any of B0, B1, or B2. But again, if its ambition is to
eventually orphan the honestly produced block B1, it has no choice but to continue trying
to grow an alternative chain emanating out of B0.

Next, there’s again a 51% chance that the next block is produced by node A (extend-
ing B0) and a 49% chance that some other node produces it (extending B2). Suppose node A
finally succeeds in producing a block B′

1 that extends the genesis block B0. Node A’s work
is certainly not done; at this point, blocks B1 and B2 still reside on the unique longest
chain. Honest nodes continue to try to extend the tip B2 or the longest chain, while node A
naturally switches to trying to extend its alternative chain further (working to extend B′

1).
Suppose the next block is produced by an honest node (a 49% change)—a block B3 that

extends B2. Honest nodes switch to trying to extend B3. Undeterred, node A continues in
its quest to orphan all the blocks produced by honest nodes, trying to extend its block B′

1.
Let’s suppose that what happens next is that node A successfully produces a block B′

2

extending B′
1 before any honest node produces a block (a 51% chance) and then gets lucky

again (another 51% chance), producing a block B′
3 that extends B′

2. Now, there is a tie for
the longest chain and, under second assumption above (about tie-breaking), blocks B1, B2,
and B3 are as good as orphaned. Why? Node A, obviously, will next try to extend B′

3, the
tip of its chain. Honest nodes might extend either block B3 or B′

3. But under assumption
that node A can choose how honest nodes break ties, it can choose for all honest nodes to
also try to extend B′

3. With all nodes trying to extend B′
3 and ignoring B3, blocks B1, B2,

and B3 have no chance of ever winding up on the longest chain.
The next block will be one that extends B′

3. Let’s suppose (a 49% chance) that a honest
node produces the next block, a block B4 that extends B′

3. Node A now has to go back into
orphaning mode. To ensure that B4 does not wind up on the longest chain, node A must
create an alternative chain that orphans it. The obvious strategy for node A is to continue
trying to extend B′

3, even as honest nodes switch to trying to extend B4. If it succeeds (a
51% chance) in creating an alternative block B′

4 that extends b”3, then B4 is guaranteed to
be orphaned (node A will never extend it and, because node A also controls honest nodes’
tie-breaking, no honest node will ever extend it either).

Hopefully the general strategy for node A is now clear. Whenever an honest node pro-
duces a block B (necessarily at the tip of the longest chain), node A stubbornly attempts to
create an alternative longest chain, beginning from node A’s most recently produced block.
Node A does not stop until succeeds. And succeed it must—with 51% of the hashrate, it
produces blocks more frequently (on average) than all the honest nodes combined. Node A’s
alternative chain will therefore eventually catch up to the honest chain, at which point all
blocks produced by honest nodes will have been orphaned.10

Discussion. A node A with 51% of the overall hashrate can dutifully follow Nakamoto
consensus results and produce 51% of the blocks on the longest chain, or mine selfishly and

10This is the role of the 51% assumption in this section. If node A produced blocks less frequently than
honest nodes, there’s a significant chance that its alternative chain would never catch up. In the next section,
when we consider a node A with less than 50% of the overall hashrate, we’ll obviously need to modify the
selfish mining strategy.

10

produce 100% of the blocks on the longest chain. Recall from Section 3 that node A can’t
influence the rate of the growth of the longest chain (which stays effectively constant due
to Nakamoto consensus difficulty adjustment) and therefore can’t influence the rate of block
reward issuance (which is directly tied to longest chain growth). In other words, because
node A can’t effect the size of the pie (e.g., 12600 BTC/fortnight), its goal is to maximize
the size of its slice. And by selfish mining, node A can get all of the pie, not merely half of
it. The overall rate of block production will be twice as fast when node A mines selfishly
than when it mines honestly (e.g., roughly 4032 blocks per fortnight rather than roughly
2016, with the difficult threshold twice as high), but the growth rate of the longest chain
will be the same in both scenarios (with only A’s blocks on the longest chain when it mines
selfishly, and all the blocks on the longest chain when node A mines honestly).

The argument above probably seems to rely heavily on the assumption that the deviating
node A can control how honest nodes break ties among competing longest chains. But if
you think about it, it’s easy to modify the selfish mining strategy to work without this
assumption. (Basically, node A just has to grow its alternative chain for one extra block.
And because it has 51% of the hashrate, it will eventually be able to do this.) The analysis
in the next section will, however, depend crucially on this assumption (which will then be
removed in Section 6).

Nakamoto consensus doesn’t guarantee consistency or liveness when there’s a node that
controls 51% of the overall hashrate. So it’s much more interesting to consider selfish mining
in the case where Nakamoto consensus does guarantee consistency and liveness, and that’s
the next order of business. The fact that selfish mining can boost a 51% node’s share of
block rewards from 51% to 100% makes you wonder if it might also be able to boost (say) a
10% node’s share to some number bigger than 10% (even if well less than 100%), perhaps by
selectively orphaning blocks produced by honest nodes. The rest of this lecture investigates
to what extent this is the case.

5 Selfish Mining with Control over Honest Tie-Breaking

5.1 The Setup

In this section, we’ll make the following assumptions:

1. All messages are delivered instantly (i.e., the super-synchronous model).

2. A deviating node A can control how other nodes break ties among competing longest
chains.

3. Every node other than A obediently follows Nakamoto consensus.

This is the same set of assumptions as in the last section, except that we are now allowing
the deviating node A to have an arbitrarily small fraction α of the overall hashrate. The first
assumption only makes our (negative) results stronger. The second assumption is a strong
one and crucial for this section’s analysis (unlike in the previous section, where we adopted

11

it only for convenience); the point of Section 6 to remove it. The third assumption reflects
our goal of showing that node A may not be incentivized to follow Nakamoto consensus,
even if all the other nodes choose to do so.

The main result of this section is:

Theorem 5.1 ([?]) Under the three assumptions above, a node A that controls an α < 1
2

fraction of the overall hashrate can mine selfishly to guarantee itself a

α

1− α

fraction of the overall block rewards.

For example, a node with 33% of the hashrate can guarantee itself 50% of the block rewards.
A node with 10% of the hashrate can guarantee itself 11.1% of the block rewards. No matter
how small α is, the deviating node is better off mining selfishly than honestly. (Recall that
if node A mines honestly, it captures an α < α/(1− α) fraction of the block rewards.)

Theorem 5.1, and Theorem 6.1 in the next section, are academically pretty famous results.
Last I checked, the original selfish mining paper of Eyal and Sirer [?] has more citations than
any other formally published research paper about blockchain protocols. And on a personal
note, this paper made a big impression on me at the time. I had always thought the Bitcoin
protocol was strikingly elegant, but it was with this paper that I began to appreciate the
depth of the computer science and game theory involved.

5.2 The Strategy

The plan. The goal of a profit-maximizing node A is to maximize its slice of the pie—the
fraction of the blocks on the longest chain (see Section 3). Thus all else equal, it wants to
do two things:

(i) Of the blocks that node A produces (“A-blocks”), get as many as them as possible into
the longest chain.

(ii) Of the blocks that honest nodes produce (“H”-blocks), force as many as them as
possible out of the longest chain.

In the last section, we saw how a node A with 51% of the overall hashrate could succeed
perfectly at both goals simultaneously, with all of its blocks and none of the honest nodes’
blocks included in the longest chain. Intuitively, the second property seemed to rely heavily
on the 51% assumption, so that node A could be sure that it would eventually grow a long
enough alternative chain to take over as the longest chain. Accordingly, the plan for this
section’s strategy is to continue to achieve the best-possible version of property (i) and,
subject to this, to do as well as one can on property (ii). That is, we’ll pursue a strategy
that’s guaranteed to get every A-block in the longest chain, and also at least occasionally
manages to orphan an H-block. If we succeed, this strategy will automatically outperform
honest mining. (The strategy gets as many A-blocks in the longest chain as honest mining

12

Figure 2: A strategy that guarantees the inclusion of every A-block on the longest chain
while also orphaning a positive fraction of the H-blocks.

(all of them) while orphaning more H-blocks, implying that the share of A-blocks in the
longest chain with selfish mining must be higher that with honest mining.)

Speedy abandonment. Like in the previous section, let’s introduce the strategy through
an example (Figure 2). Start with a genesis block, B0. There’s an α chance the next block
is an A-block, and a 1− α chance that it’s an H-block. (Remember, α denotes the fraction
of hashrate controlled by node A.) Let’s suppose that the latter (the more likely event)
happens, with some honest node producing a block B1 that extends B0. Honest nodes
dutifully switch to trying to extend B1, the tip of the longest chain. What should node A
do? To have any chance of orphaning the H-block B1, node A must attempt to grow an
alternative chain starting from the genesis block B0.

Next, there’s an α chance that the next block produced will be an A-block (extending B0)
and a 1 − α chance that it’s an H-block (extending B1). If node A succeeds in creating its
A-block, then, because of our standing tie-breaking assumption, B1 is as good as orphaned.
(Node A will never extend B1, and will break ties for the honest nodes so that they also
never extend B1.) But let’s suppose that the second block is also an H-block, with B2

extending B1.
When this same sequence of events occurred in the last section, node A’s strategy was to

carry on and continue its attempt to create an alternative chain starting at B0. There wasn’t
any real risk in doing so, because (by that section’s assumption) node A produced blocks
more frequently than all the honest nodes combined, and so it would eventually succeed in
creating a new longest chain. Here, when node A has only an α < 1

2
fraction of the hashrate,

it might never catch up (resulting in 0% of the block rewards!). Presumably, node A should
give up at some point and abandon whatever alternative chain it’s trying to grow, once its
chances of catching up to the longest chain become sufficiently remote.

Given our plan of never allowing any A-blocks to get orphaned, node A needs to give up
and reset quickly. (If it grew a non-empty alternative chain of A-blocks and ever stopped
extending it, all of those A-blocks would get orphaned.) In our running example, with the
H-block B2 extending the H-block B1 and no A-blocks yet created, node A concedes the
H-block B1 to the longest chain and channels its energies into instead orphaning B2. (Such
concessions are the price paid for owning less than 50% of the overall hashrate.) This entails
trying to create a block B′

2 extending B1, which (with our standing tie-breaking assumption)
would effectively orphan the H-block B2. Let’s suppose this is indeed what happens next,
resulting in all nodes (node A and the honest nodes) trying to extend the block B′

2.

13

Delayed block announcements. So far, node A has only engaged in the usual longest-
chain shenanigans of deliberate forking. What else could it do? We saw the answer back in
Lecture 8, when we were analyzing the consistency and liveness properties of permissioned
longest-chain consensus. In our proofs, we allowed a Byzantine node to choose whatever
predecessors it wanted (possibly deviating from the longest chain) and also to keep secret
any blocks that it has created, perhaps saving them for release at a later time. At the
time, it wasn’t clear why a Byzantine node would want to delay a block announcement
(though it certainly could if it wanted), and in fact the threshold of honest hashrate necessary
for consistency and liveness (51%) was the same whether Byzantine nodes delayed block
announcements or not. In that lecture, this additional power only served to make our proofs
trickier. Here, we’ll see how delayed block announcements are directly useful to a node
striving to maximize its share of the block rewards.

Resuming our running example where we left off, suppose node A just succeeded in
creating the A-block B′

2, thereby orphaning the H-block B2. Every node is now trying to
extend the block B′

2, and there’s an α chance that node A is the first to do so. Suppose this
does in fact happen, with A-block B′

3 extending B′
2. Node A could announce B′

3 immediately,
and this would guarantee that block’s inclusion in the longest chain. But there’s something
more strategically clever that it could do, which is to keep quiet about its new block B′

3.
Why is this helpful? Because it tricks the honest nodes into trying to extend a block that is
not the tip of the longest chain, namely B′

2 (the tip of the longest chain that honest nodes
happen to know about); meanwhile, node A can secretly work to extend B′

3 with yet another
A-block.

Imagine that the next block created is an H-block. Had node A announced its new
block B′

3 to everyone, this H-block would have been a block B4 extending B′
3. This block

would be the new tip of the longest chain, and would have a legitimate shot at staying
in the longest chain forevermore. But because node A kept the block B′

3 secret, the new
H-block is instead a block B3 extending the old block B′

2. If node A plays its cards right,
there’s no chance that this H-block winds up in the longest chain: node A can announce its
secret block B′

3 immediately after B3 is announced, at which point (because of our standing
tie-breaking assumption) B3 is as good as orphaned. In effect, keeping B′

3 in its back pocket
allowed node A to nullify block B3 as soon as it was announced.

In general, node A will make sure that each block that it creates is put to good use,
orphaning some H-block at the same block height. (Remember, the height of a block is the
number of hops between it and the genesis block. In our example, we always number blocks
according to their height.) In our running example, suppose that the block created after
the (currently secret) A-block B′

3 is not an H-block but another A-block, a block B′
4 that

extends B′
3. Node A keeps B′

4 (along with B′
3) to itself, and works to extend B′

4 with yet
another A-block (while the poor honest nodes remain in the dark, trying to extend B′

2). If
at some point an honest node finds a block B3 extending B′

2, then node A can orphan it
immediately by announcement B′

3. (Node A keeps B′
4 in its back pocket.) If the honest

nodes get lucky again and produce the next block B4 (this time, extending B′
3), then node A

can immediately announce its block B′
4 to nullify that block, as well.

14

The general strategy. The general strategy is exactly what you would think it would
be, given our running example. Again, there are two main ideas: if the tip of the longest
chain is an H-block, try to orphan it (conceding any H-blocks that are already buried deeper
than the tip of the longest chain); and otherwise, keep A-blocks secret, releasing them on an
as-needed basis to nullify subsequently created H-blocks. These two ideas show up in Case 2
and Case 1 below, respectively.

The Selfish Mining Strategy (with Control over Tie-Breaking)

Notation: Let h denote the maximum height of any block produced thus
far (by either node A or by an honest node).

Case 1: If there is a height-h A-block, work to extend it.
[If successful, keep private.]11

Case 2: If the only height-h block is an H-block B, then work to orphan it
by extending B’s predecessor with a competing height-h A-block.
[If successful, announce immediately.]

Throughout: Announce an A-block at height h (if one exists) as soon as a
height-h H-block is announced.

In our running example, we saw Case 1 in action at the point when there was a height-2 A-
block B′

2 and no block at a larger height (and then again once the A-block B′
3, extending B′

2,
was produced). We saw Case 2 in action at the point when there was a height-2 H-block B2

and no height-2 blocks.

5.3 The Analysis

If every node obediently follows Nakamoto consensus, a node with an α fraction of the overall
hashrate with produce (in the long run) an α fraction of the blocks on the longest chain and
hence an α fraction of the overall block rewards. (In the super-synchronous model, every
block produced will make it into the longest chain.) Can the selfish mining strategy in
Section 5.2 boost a node’s share of the overall block rewards? (We already discussed why
the answer is clearly yes, given that the strategy guarantees that all A-blocks make it into
the longest chain and that a nonzero number of H-blocks will get orphaned.) By how much?

For the analysis, think about a long sequence of N consecutive blocks produced by the
nodes. (Think of N in the thousands, say. Some of these blocks will wind up on the longest
chain, others may be orphaned.) Assume that a node with an α fraction of the hashrate
produces exactly an α fraction of these N blocks. (Under the random oracle assumption, as
N grows large, the law of large numbers tells us that this will typically be the case, up to
negligible deviations. See also our “proportional representation” arguments from Lecture 8.)
The analysis then has three steps.

11This case applies also at the beginning of the protocol, when the only block is the genesis block.

15

Step 1. The first observation is simply that αN of the N blocks above will be A-blocks,
with the remaining (1 − α)N blocks being H-blocks. The question, then, is how many of
each wind up on the longest chain.

Step 2. The next claim is that, as telegraphed earlier, 100% of the A-blocks produced
wind up on the longest chain—a perfect implementation of property (i) in the original plan
in Section 5.2. Why is this true? Well first of all, by construction of the strategy, whenever
an A-block is announced, that block is at that time the tip of one of the longest chains
known to honest nodes. In our running example, the A-block B′

2 is announced as soon as
its created, and is tied with the H-block B2 for the tip of the longest chain. The A-blocks
B′

3 and B′
4 are announced only (immediately) after the announcement of the H-blocks B3

and B4 at the same heights, at which times they are again tied for the tip of the longest
chain known to honest nodes. In general, an A-block is announced either in Case 2 of the
strategy (where by construction the block is tied with the incumbent tip of the longest chain)
or on an as-needed basis to nullify a just-announced H-block at the same height (as in the
“Throughout” part of the strategy). Also, every A-block will be announced eventually (once
honest nodes eventually manage to produce an H-block at the same height).

Given that every A-block is, upon announcement, the tip of a longest chain, and given
our standing tie-breaking assumption, every A-block is guaranteed inclusion in the longest
chain. When a new A-block B′ is announced, certainly node A will work to extend it; and
because B′ is the tip of a longest chain, node A can also force the honest nodes to work to
extend it. Thus, every node will forevermore work to extend B′ and its descendants, and B′’s
position is the longest chain is assured.

Step 3. What about property (ii) from the original plan in Section 5.2? How many H-
blocks make it into the longest chain? Note that not all of them will be orphaned—in our
running example, the H-block B1 made it into the longest chain.

The key claim is that every A-block is responsible for orphaning exactly one H-block (at
the same height). In our running example, the A-blocks B′

2, B
′
3, and B′

4 orphan the H-blocks
B2, B3, and B4, respectively. (In the case of B′

2 the orphaning happens immediately; for B′
3

and B′
4 it happens eventually, once honest nodes get around to producing B3 and B4.) In

general, as we saw in Step 2, whenever an A-block is announced, it is at that time tied (with
some H-block) for the tip of the longest chain known to honest nodes. We also saw in Step 2
that, due to the current tie-breaking assumption, such an A-block is guaranteed to wind up
on the longest chain. In turn, this means that the competing H-block is guaranteed to not
wind up on the longest chain. (A chain can have only one block at each height.) Thus, for
every A-block (on the longest chain), we can point to an H-block at the same height that gets
excluded from the longest chain. Because all the A-blocks produced have distinct heights
(an easily observed property of the selfish mining strategy), all of these orphaned H-blocks
must be distinct.

Final calculations. Here are the takeaways from steps 1–3:

1. N blocks produced overall, with αN being A-blocks and (1− α)N being H-blocks.

16

2. All αN A-blocks wind up on the longest chain.

3. Each of the αN A-blocks forces a distinct H-block off of the longest chain.

With (1−α)N H-blocks total and αN of them knocked off the longest chain by a competing
A-block, (1 − α)N − αN = (1 − 2α)N H-blocks make it into the longest chain. Thus, the
longest chain will have αN A-blocks, (1− 2α)N H-blocks, for a total of αN + (1− 2α)N =
(1−α)N blocks on the longest chain. The fraction of A-blocks on the longest chain—which,
by the discussion in Section 3, is what we actually care about—is

of A-blocks on longest chain

total # of blocks on longest chain
=

αN

(1− α)N
=

α

1− α
.

This completes the proof of Theorem 5.1.
Again, the key point is that α/(1 − α) > α for every α > 0. That is, no matter how

little hashrate node A has, it is better off selfish mining than honest mining (assuming it can
control how honest nodes break ties between competing longest chains, and assuming that all
other nodes obediently follow Nakamoto consensus). A node with 20% of the hashrate can
secure 25% of block rewards, a node with 10% of the hashrate 11.1% of the block rewards,
and so on.

Discussion. You might be bothered by how strongly this section’s analysis depends on
the assumption that the deviating node can control how the honest nodes break ties. One
thing to remember is that scenario is hard to entirely rule out—control over tie-breaking can
perhaps be well approximated by superior network connectivity (e.g., if honest nodes break
ties according to which block they heard about first).

That said, the point of Section 6 is to re-analyze selfish mining without this assumption.
We’ll see there that selfish mining can still improve over honest mining, but only for nodes
that control a sufficiently large fraction of the overall hashrate (roughly 33%).

5.4 Connection to Chain Quality

Theorem 5.1 is not the first time that we’ve seen the expression α/(1−α). Back in Lecture 8,
we proved that (under a list of assumptions) Nakamoto consensus satisfies (probabilistic)
consistency and liveness assuming that at least 51% of the overall hashrate is controlled by
honest nodes. We then proceeded to ask if we could strengthen the liveness guarantee under
stronger assumptions about the fraction of hashrate controlled by honest nodes. This led
to the concept of chain quality, defined as the fraction of blocks on the longest chain that
were contributed by honest nodes. (Liveness is basically equivalent to the guarantee that
the chain quality is strictly positive, because Byzantine nodes can produce empty blocks
while honest nodes are supposed to include in a block all the pending transactions that they
know about.) We saw in that lecture that the proof of liveness for Nakamoto consensus
was easily extended to show the following (with high probability over long block sequences,
and ignoring a small amount of variance): if an α < 1

2
fraction of the hashrate is controlled

17

by Byzantine nodes, then no matter how honest nodes break ties among competing longest
chains, the chain quality is at least

1− 2α

1− α
.

At the time, we were disappointed that the chain quality guarantee was (1 − 2α)/(1 − α)
rather than the (bigger) number 1−α. If 67% of the hashrate is controlled by honest nodes,
why shouldn’t the chain equality also by 67%?

Theorem 5.1 explains why. Suppose there’s a Byzantine node that controls an α fraction
of the overall hashrate, with the other 1 − α fraction controlled by honest nodes. One
strategy available to this Byzantine node is to play the role of a profit-maximizing node A
and carry out the selfish mining strategy in Section 5.2. Theorem 5.1 then implies that if ties
between A-blocks and H-blocks at the same height are always broken in favor of A-blocks,
this Byzantine node can guarantee itself an α/(1 − α) fraction of the blocks on the longest
chain. The honest nodes are stuck with the leftovers, which is a

1− α

1− α
=

1− 2α

1− α

fraction of the blocks on the longest chain.
Thus, the chain quality guarantee of (1 − 2α)/(1 − α) for Nakamoto consensus from

Lecture 8 is not an artifact of our particular proof; there really is a strategy for Byzantine
nodes to force the chain quality down to that level. Similarly, the guarantee of α/(1− α) in
Theorem 5.1 is not an artifact of its proof or of the specific selfish mining strategy described
in Section ??; a profit-maximizing node will be unable to drive the corresponding chain
quality any lower. Each of these results—one about the game theory and the other about
the security of Nakamoto consensus—shows that the other is the strongest possible (for every
value of α ∈ (0, 1

2
)) and cannot be improved with more clever arguments or strategies (at

least, without further assumptions about how honest nodes break ties).12

6 Selfish Mining: The Main Result

This section is easily the most mathematically difficult of this lecture, so you skip it if you’re
not excited about some interesting mathematical analysis. (But don’t skip the discussion in
Section ??!) If you do like non-trivial mathematical analysis, like I do, this should be your
favorite part of the lecture. The result in this section is what is usually considered the “main
result” of the paper by Eyal and Sirer [?] mentioned earlier. The prevailing intuition prior
to that paper was that honest mining should be optimal for a node as long as it has less
than 50% of the overall hashrate, so this result came as a big surprise at the time.

12Note that comparing the two results is an apples-to-apples comparison, in the sense that both were
proved in the super-synchronous model with honest nodes breaking ties in the way least favorable to them.

18

6.1 The Setup

For our final setting, we’ll make the following assumptions:

1. All messages are delivered instantly (i.e., the super-synchronous model).

2. Honest nodes break ties among competing longest chains arbitrarily.

3. Every node other than A obediently follows Nakamoto consensus.

The difference with Section 5 is that ties between longest chains are no longer broken by
node A, but arbitrarily. Concretely, this means that in the analysis in this section, we’ll
assume that ties between an H-block and an A-block at the same height will always be
broken in favor of the H-block. Remember, the first assumption only makes our (negative)
results stronger, and the third assumption reflects our goal of showing that honest mining
is not a Nash equilibrium (i.e., honest mining may not be properly incentivized, even if all
other nodes are mining honestly).

The main result of this section is:

Theorem 6.1 ([?]) Under the three assumptions above, a node A that controls an α > 1
3

fraction of the overall hashrate can mine selfishly to guarantee itself strictly more than an α
fraction of the overall block rewards.

We’ll be able to precisely quantify the gory details of “strictly more” in the analysis (Sec-
tion ??); the statement of Theorem 6.1 emphasized the main point, that selfish mining is
superior to honest mining for nodes with a sufficiently large (but still less than 50%) fraction
of the overall hashrate, no matter how honest nodes break ties between competing longest
chains. (Recall that if node A mines honestly, it captures an α < α/(1− α) fraction of the
block rewards.)

6.2 The Risks of Selfish Mining

The two goals. Remember that the goal of a profit-maximizing node A is to maximize
its slice of the pie—the fraction of the blocks on the longest chain (see Section 3). Thus all
else equal, it wants to do two things:

(i) Of the blocks that node A produces (“A-blocks”), get as many as them as possible into
the longest chain.

(ii) Of the blocks that honest nodes produce (“H”-blocks), force as many as them as
possible out of the longest chain.

We saw in Section 4 that a node with 51% of the hashrate has a strategy that perfectly
implements (i) and (ii), with the longest chain consisting of all and only the A-blocks (i.e.,
with all H-blocks orphaned and no A-blocks orphaned). We saw in Section 5 that a node
with an α fraction of the hashrate and control over the tie-breaking of honest nodes can
again implement (i) perfectly (with all A-blocks included in the longest chain) and (ii)
approximately (with the fraction of orphaned H-blocks increasing with α).

19

Figure 3: Any attempt to orphan an H-block runs the risk of a later orphaning of an A-block.

Example: the conflict between the two goals. In this section, with a node A with
an α < 1

2
fraction of the hashrate and no control over tie-breaking, properties (i) and (ii)

are fundamentally in conflict. That is, any attempt by node A to orphan any H-blocks will
automatically introduce a risk that one or more A-blocks will themselves get orphaned—
progress on goal (ii) requires compromises on goal (i).

o For example, consider Figure 3, and suppose first that only the blocks B, B1, and B′
1

are in existence. Suppose B1 is an H-block and B′
1 is an A-block. (Perhaps B1 was produced

first and node A then worked to produce B′
1 with the hopes of orphaning B1.) Last section,

node A would have declared victory at this point—it’s only going to extend its own block B′
1

and, because it could dictate how honest nodes break ties, node A could also force all honest
nodes to work to extend B′

1 rather than B1. In that setting, B1 was as good as orphaned
and B′

1’s place in the longest chain was assured.
In this section, however, node A cannot force honest nodes to extend B′

1 rather than B1,
and in fact must be prepared for the scenario in which all the honest nodes are doing the
opposite. Which means that node A should be a bit nervous, right? It’s trying to extend its
own block B′

1; it can rest easy if it succeeds and produces another A-block B′
2, as B′

1 and B′
2

would then belong to the unique longest chain, their places in the eventual longest chain
secured (and B1 orphaned). (If there’s a unique longest chain, honest nodes must work to
extend it.)

But, if honest nodes produce a block B2 (extending B1) first, as in Figure 3, then node A
finds itself in a deeper hole than before. Now it needs to produce two blocks—a B′

2 and
a B′

3—in order to create a unique longest chain with its A-blocks. Meanwhile, the honest
nodes will continue to dutifully try to extend the longest chain, and might well create a
block B3 (extending B2) before node A is able to create B′

2. Indeed, because α < 1
2
, in the

long term, the combined block production of the honest nodes will outpace that of node A.
Presumably, once node A finds itself in a deep enough hole—imagine it’s 100 blocks behind
the longest chain, say, with the chance of ever catching up astronomically small—it will give
up and reset (e.g., switch to trying to orphan the tip of the current longest chain, rather
than the whole thing). And whenever it does give up, it abandons all of the A-blocks it
produced on its alternative chain (like the block B′

1 in Figure 3). This is the sense in which,
without control over tie-breaking, any attempt by a deviating node to orphan an H-block
automatically carries the risk of orphaned A-blocks.

Implications. A node contemplating a deviation from Nakamoto consensus must weigh its
benefits (in the form of orphaned H-blocks) against its costs (orphaned A-blocks), a tug-of-
war between two complex forces. In Section 5 it was obvious that the selfish mining strategy

20

in Section 5.2 would boost block rewards (the number of A-blocks on the longest chain
stayed the same, the number of H-blocks was strictly smaller). Here, without control over
tie-breaking, it’s not obvious at all whether any selfish mining strategy could be profitable.
(And, for nodes with a sufficiently small fraction of the hashrate, they’re not.) And if selfish
mining can improve over honest mining for sufficiently large hashrates, we have to expect
that it will be a complex analysis that shows it, an analysis that quantifies and compares the
costs and benefits of selfish mining and identifies the crossover point of hashrate at which
the latter exceeds the former. (And indeed, the selfish mining strategy in Section 6.3 is more
complex than that in Section 5.2, and the analysis in Section ?? is much more sophisticated
than that in Section 5.3.)

6.3 The Strategy

Description of strategy. The selfish mining strategy in Section 5.2 had two cases, de-
pending on whether there was an A-block with height at least as large as every H-block.
Here we’ll need four, which roughly parameterize the extent to which node A’s private chain
of A-blocks is farther ahead than the longest chain known to honest nodes. For concreteness
and reference, we’ll state here the full strategy; the rest of the section talks through it and
illustrates it via examples. In all four cases, “success” means that node A produces a block
before any honest node, and “failure” means the opposite.

The Selfish Mining Strategy (with No Control over Tie-Breaking)

Notation: Let hp and hs denote the maximum heights of a block known to
all nodes and of a block known only to node A, respectively.13

Case 1: hp > hs.
(I.e., the tip of the longest chains is public.)
Node A works to extend the longest chain.
[If successful, keep the new A-block private and proceed to Case 2.]
[If failure, switch to the new tip of the longest chain, stay in Case 1.]

Case 2: hs = hp + 1.
(I.e., node A is one block ahead of all publicly known longest chains.)
Node A works to extend its private A-block.14

[If successful, keep the new A-block private and proceed to Case 4.]
[If failure, proceed to Case 3.]

Case 3: hs = hp.
(I.e., there’s a secret A-block that, were it announced, would be tied for the
longest chain.)
Node A works to extend its private A-block.15

[If successful, announce the private A-block and the newly created block.]

21

[If failure, give up and return to Case 1.]

Case 4: hs ≥ hp + 2.
(I.e., node A is at least two blocks ahead of all publicly known longest chains.)
Node A works to extend the tip of its private chain of A-blocks.
[If successful, keep the new A-block private and continue in Case 4.]
[If failure but still have hs ≥ hp + 2, continue in Case 4; otherwise (if hs is now
hp + 1) announce the entire private chain of A-blocks.]

The parameter hp tracks the (height of the) tip of a longest chain known to honest nodes
(p for “public”); honest nodes will, by definition, work to extend such a block. (Remember,
the length of a chain equals the height of its tip.) Honest nodes know about all H-blocks
ever produced (honest nodes immediately broadcast newly created blocks), and whichever
A-blocks node A has deigned to announce. There may be additional blocks that node A has
created but not announced; the parameter hs tracks the maximum height of any of these
blocks (s for “secret”).

Next we’ll talk through the four cases of the strategy. There are four relevant pieces of
information for each: (i) the conditions under which the case applies; (ii) which block node A
attempts to extend; (iii) what happens next if node A produces a block before any honest
node does; (iv) what happens next if an honest node produces a block before node A does.

References

13If every block known to node A is also known to all honest nodes, interpret hs as −1.
14As we’ll see, the only way that this case can be reached is by node A successfully producing a (private)

block in Case 1.
15As we’ll see, the only way that this case can be reached is by node A successfully producing a (private)

block in Case 1 and then an honest node successfully producing an H-block in Case 2.

22

