
Foundations of Blockchains
Lecture #1: Introduction and Overview∗

Tim Roughgarden†

1 The Upshot (of Lecture 1)

1. This lecture series is about the science and technology of blockchain protocols and the
applications built on top of them, with an emphasis on fundamental principles rather
than specific protocols.

2. We’re witnessing a new area of computer science blossom in real time, and future
generations will be jealous of your opportunity to get in on the ground floor.

3. Roughly 60% of the lectures are about “layer 1,” including consensus (agreeing on a
sequence of transactions) and compute (executing those transactions).

4. Roughly 20% of the lectures concern “layer 2,” where the goal is to scale up layer-1
functionality (e.g., transactions processed per second) by orders of magnitude.

5. Roughly 20% of the lectures focus on the application layer (smart contracts and the
user-facing applications that interact with them), with a particular focus on decentral-
ized finance (DeFi).

6. For us, blockchains will not be about digital money (except as means to an end) but
rather a new computing paradigm—–a programmable computer that lives in the sky,
that is not owned by anyone and that anyone can use.

7. We will always assume the existence of the Internet (semi-reliable point-to-point com-
munication) and cryptography (specifically, cryptographic hash functions and secure
digital signatures).

8. A user of a digital signature scheme uses their private key to sign messages, and such
signatures can be verified by anyone who knows the corresponding public key.

∗©2021–2022, Tim Roughgarden.
†Email: tim.roughgarden@gmail.com. The preparation of these notes was partially supported by a seed

grant from the Columbia-IBM Center for Blockchain and Data Transparency.

1

9. Such a scheme is secure if it’s impossible (or at least computationally infeasible) to
forge signatures without knowing the private key.

10. State machine replication (SMR) is the consensus problem most immediately relevant
to blockchains. In this problem, a bunch of nodes run a protocol to stay in sync on an
ever-growing ordered sequence of transactions that have been previously submitted by
clients.

11. A “solution” to the SMR problem is a protocol (i.e., code deployed at each node
to control local computation and communication) that satisfies consistency (no pair
of nodes ever disagrees on the relative order of a pair of transactions) and liveness
(submitted transactions eventually get processed).

2 About These Lectures

This lecture series is about the science and technology of blockchain protocols and the
applications built on top of them. There will not be any hype (OK, maybe two minutes
of hype, below), and these lectures assume that you are already sufficiently interested in
or curious about blockchains to spend a number of hours thinking hard about how they
work. We will not discuss anything about investing (the future price of Bitcoin, etc.), nor
about startups and entrepreneurship. We will avoid nitty-gritty engineering aspects (e.g.,
we won’t being going line-by-line through any smart contract code), except as it’s needed to
appreciate more general issues.

Instead, this lecture series will focus on the fundamental principles of blockchain design
and analysis, such as they are in 2022 (it’s still early days. . .). The goal is to equip you with
the tools and concepts to evaluate and compare existing technologies (cutting through the
rampant marketing crap), understand fundamental trade-offs between different properties
one would want from a protocol or application, and perhaps even create something new and
important in the near future (because it’s early days, you can have a tremendous impact on
the area’s future trajectory).

(Here’s the hype part.) It’s worth recognizing that we’re currently in a particular moment
in time, witnessing a new area of computer science blossom before our eyes in real time. It
draws on well-established parts of computer science (e.g., cryptography and distributed sys-
tems) and other fields (e.g., game theory and finance), but is developing into a fundamental
and interdisciplinary area of science and engineering in its own right. Future generations of
computer scientists will be jealous of your opportunity to get in on the ground floor of this
new area—analogous to getting into the Internet and the Web in the early 1990s. I cannot
overstate the opportunities available to someone who masters the material covered in this
lecture series—current demand is much, much bigger than supply.

And perhaps these lectures can also serve as a partial corrective to the misguided cov-
erage and discussion of blockchains in a typical mainstream media article or water cooler
conversation, which seems bizarrely stuck in 2013 (focused almost entirely on Bitcoin, its
environmental impact, the use case of payments, Silk Road, etc.). A surprising number of

2

people, including a majority of computer science researchers and academics, have yet to grok
the modern vision of blockchains: a new computing paradigm with the potential to enable
the next incarnation of the Internet and the Web, along with an entirely new generation of
applications.

3 Overview of Lecture Series

3.1 The “Blockchain Stack”

To explain the organization of these lectures, it’s useful to keep in mind a cartoon version
of a “blockchain stack” that comprises a number of layers (Figure 1).1 Starting from the
bottom and moving on up:

(0) For us, layer 0 will basically be the Internet. That is, it provides at least a semi-reliable
method for point-to-point communication between untrusted parties.

(1) Layer 1 is the consensus layer, and its job is to keep a bunch of computers (potentially
scattered all over the globe) in sync, despite possible network failures and attacks.
For example, Bitcoin and Ethereum are both layer-1 protocols. For smart contract
platforms like Ethereum, it can also be useful to separate out the compute layer, with
the consensus layer merely deciding which instructions (smart contract function calls,
etc.) should be executed and in what order, and the compute layer responsible for
actually carrying out those instructions and updating the global state. (E.g., full
nodes running the Ethereum protocol participate simultaneously in both consensus
and compute.)2

(2) For us, layer 2 will be the scaling layer. The goal here is basically to implement the
same functionality exported by a layer-1 protocol, but a lot more of it. For example,
Bitcoin and Ethereum can only process so many transactions (roughly 5 per second
and 15-20 per second, respectively), and the point of a layer-2 protocol is to scale this
capacity up by at least a couple of orders of magnitude.

(3) Finally, on top there is an application layer (as there is in the Internet stack), which
refers to the applications built on the functionality provided by the previous layers.
(Decentralized exchanges like Uniswap and NFT marketplaces like OpenSea are ex-
amples you might be familiar with.) Here again we’re grouping together two logically
distinct things, the actual smart contracts that live in the blockchain (sometimes called

1For an analogy, when you study computer networking, you learn about the layers of the Internet stack
(network layer, transport layer, etc.). Ask 10 researchers in computer networking about the details of the
stack and you’ll get 11 different answers, and the situation is even more extreme in the blockchain world. . . .

2One can also further subdivide the functionality of the consensus layer into: (i) the selection of an
ordered sequence of transactions; and (ii) the storage of that sequence. There is increasing momentum for
separating out the second responsibility from the first via a “data availability layer.” This idea will make
more sense later, when we discuss approaches to scaling a smart contract platform such as Ethereum.

3

layer 0
point-to-point communication

(≈ the Internet)

layer 1
consensus layer (keeps all nodes in sync)
+ compute layer (carry out sequence of

instructions upon which consensus is reached)

layer 2
scaling layer (same functionality as layer 1,

but more of it by orders of magnitude)

application layer
smart contracts (“protocol layer”) and user-facing

applications to interact with them

Figure 1: A cartoon version of the “blockchain stack” to explain the organization of this
lecture series. (Warning: not standardized, in flux, porous boundaries.)

the “protocol layer”) and the user-facing icing on top (e.g., a Web interface). For exam-
ple, Uniswap is really two things, its smart contracts and its Web interface to interact
with those contracts. These are different things: For example, you can interact with the
Uniswap contracts directly (as one would via a function call from a different contract,
for example) rather than going through the standard Web interface.

Again, don’t take this taxonomy too seriously—it’s in flux and not at all standardized. For
example, “layer 2 solution” often means something more specific than an arbitrary scaling
solution (as we’ll discuss in a future lecture). Also, the clean picture of a stack is misleading,
as the boundaries between layers are porous. Ideally the layers would be insulated from
each other, with protocols for one layer depending only on the provided functionality of
the layer below (and independent of the latter’s implementation). Currently this is far
from true, unfortunately; for example, if you’re implementing a decentralized exchange at
the application layer, it’s really useful to know exactly how the layer-1 consensus protocol
works. Open question: Will we eventually come up with relatively clean separations between
layers, or is there something about blockchains and their applications that forces layers to
interact?

3.2 Outline of Lectures

We can describe the arc of this lecture series in terms of the layers above. We’ll skip layer 0
and assume that we have the functionality of the Internet (such as it is). There’s plenty of
interesting work about blockchain-friendly layer-0 protocols (e.g., designing a peer-to-peer
gossip protocol to make denial-of-service attacks harder), but it’s outside our scope.

The majority of the lectures—perhaps 60% of them—will be about layer-1 protocols.

4

(Evidently, there’s a lot to say here.) In the first 10 or so lectures, we’ll discuss classical
consensus protocols (and how they inspired Tendermint), Nakamoto/longest-chain consensus
(one of Bitcoin’s key innovations), proof-of-work and proof-of-stake sybil-resistance mecha-
nisms, difficulty adjustment, and “selfish mining.” The last four or so lectures on layer-1
protocols will be a deep dive on the world’s biggest two blockchains, Bitcoin and Ethereum.
Even though nitty-gritty details are not a focus of this lecture series, you’ll learn quite a
bit about how these two protocols work—both because it’s useful to know, and because it’s
a prerequisite for understanding how layer-2 scaling protocols work (scaling solutions must
inevitably adapt to the idiosyncrasies and limitations of the underlying layer-1 protocol).

Speaking of which, the next 20% or so of the lectures will be about layer-2 protocols
(an extremely active area in 2021–2022). We’ll discuss the Lightning network, the principal
solution thus far for scaling up Bitcoin, and “rollups” (both “optimistic” and “zk/validity”),
which appear to be the way forward for scaling up Ethereum. Time permitting, we’ll also
cover some newer layer-1 protocols that strive for high throughput out of the box, potentially
obviating or at least delaying the need for layer-2 solutions.

The final 20% of the lectures will focus on the application layer, and primarily on “DeFi”
(decentralized finance), which is where a lot of the action has been over the past couple
of years. We’ll have a couple lectures on DeFi primitives (stablecoins, price oracles) and a
couple on applications built on top of those primitives (borrowing and lending, trading via
automated market makers). We’ll also talk about “MEV” (for “miner extractable value”),
which is a great case study of the current lack of separation between the consensus and
application layers.

3.3 Three Comments

Reflecting on the lecture series plan, let me single out three big differences between these
lectures and a majority of the “introductions to blockchain” that you might come across.

A new computing paradigm. For us, blockchains are not about cryptocurrencies or
payments per se. They’re about a new computing paradigm—a programmable computer
that lives in the sky, that is not owned by anyone (or rather, is owned by thousands of
people all over the globe, including yourself if you like) and that anyone can use. (There
might be a usage fee you have to pay, but there’s no access control—you don’t need anyone’s
permission.) When thought of this way, how could blockchains not unlock a totally new
generation of applications?3

Not about digital money. Many blockchain introductions (especially the Bitcoin-focused
ones) start by asking “what is money, anyway?” You learn about its uses (store of value,
medium of exchange, unit of account), Bitcoin’s interpretation as a form of “digital gold”
with programmatic scarcity, and maybe even the rai stones from the island of Yap. This is

3Remember, for a couple decades there, no one really knew what to do with the Internet other than
send emails and transfer files—it was “just” a very sped-up version of the postal service. Obviously, people
eventually figured out some pretty cool things to build on top of it!

5

all cool stuff (if you haven’t read about it, look it up), but in 2022 this is an outdated and
overly narrow perspective. For us, cryptocurrency is the means, not the ends—a tool that
helps us implement the functionality that we really want, by charging for blockchain usage
and/or rewarding actors that contribute to the protocol and keep it running.

Principles over protocols. We won’t start by explaining how one specific blockchain
protocol like Bitcoin or Ethereum works. (Though we will learn a lot about those two
protocols later.) Rather, we’ll start with the fundamental principles of consensus protocol
design and analysis (safety, liveness, etc.), and will then understand specific protocols through
the lens of these principles.

4 Digital Signature Schemes

4.1 Permanent Assumptions

Consensus—keeping multiple machines (usually called nodes) synced up, despite failures
and attacks—is the fundamental problem that must be solved by any blockchain protocol.
Next lecture, we’ll see how to solve this problem under a long list of assumptions. The
subsequent lectures work hard to relax these assumptions. But there are two assumptions
(both palatable, fortunately) that we’ll never relax:

1. The Internet exists. (That is, there is a semi-reliable mechanism for point-to-point
communication between untrusted parties.)

2. Cryptography exists. For the most part, we won’t need anything too exotic, primarily
the existence of cryptographic hash functions (discussed in a later lecture) and secure
digital signature schemes (details below).

4.2 Definition of a Digital Signature Scheme

A digital signature scheme is defined by three (computationally efficient) algorithms:

1. Key generation algorithm: takes as input a random seed r, and returns a public
key-private key pair (pk, sk). As the terminology would suggest, sk should be kept
private (it will let you sign digital documents) while pk should be posted in public
view (it allows anyone to verify your signature). The two keys are inextricably linked—
indeed, typically pk can be derived directly from sk.

[In a typical implementation, the algorithm might well take no input and generate its
own random seed. E.g., type in ssh-keygen (with no arguments) at a Unix command
line.]

2. Signing algorithm: takes as input a message m and a private key sk, and returns
a signed version of the message (m, sig). (Here sig denotes bits that are appended to

6

the end of the message. The signature length is independent of the message length,
and in a blockchain context is typically 520 bits or thereabouts.)

Note that the signature depends on the message (and on the identity of the signer, i.e.,
the provided private key). This is totally different from IRL signatures—your pen-and-
paper signature is the same, no matter what the document contents. This property
is obviously necessary for digital signatures—a document-independent signature could
be easily copied and pasted to forge other signed documents.

3. Verification algorithm: takes as input a message m, someone’s public key pk, and an
alleged signature sig of m by the person who knows the corresponding private key sk.
The algorithm answers “yes” or “no,” according to whether the signature is valid (i.e.,
whether or not running the signing algorithm with message m and the private key sk
corresponding to pk really would generate the signature sig).

Note that only the holder of the private key is in a position to run the signing algorithm,
while everyone (who knows the public key) can run the verification algorithm.

4.3 Defining “Security”

In practice, secure digital signature schemes exist; in fact, some have been known since the
late 1970s.4 What do we mean by “secure”? For simplicity, we’ll work with the most extreme
version.

Assumption (ideal signatures): it is impossible to forge a signature without knowing
the private key, even if you’ve seen a huge collection of examples of messages that have
been signed with that key (with the example messages potentially chosen by the would-be
attacker). That is, given such examples and a new (previously unseen) message m, without
knowledge of the private key sk, it is impossible to generate a signature sig such that the
verification algorithm would respond “yes” to the input (m, sig, pk) (where pk is the public
key corresponding to sk).

This assumption is a good approximation of reality (assuming you use a well-implemented
digital signature scheme with an appropriate key length). But as a theorist, it’s my duty
to point out that, strictly speaking, the assumption as stated is false. (If you’re OK with
taking the ideal signatures assumption on faith, feel free to skip the rest of this section.)
For example, it’s possible in principle to break a signature scheme by brute-forcing the
private key—given a message m and signature sig generated by the private key sk, an
adversary could enumerate all possibilities for sk and try each one, waiting until it manages
to regenerate the signature sig (at which point the adversary knows that its current guess
actually is sk), and then using the reverse-engineered private key to sign any other messages
that it wants.

4RSA (Rivest-Shamir-Adelman) signatures are well known but not generally used in blockchain protocols
on account of the relatively long lengths of its signatures and keys. ECDSA (“elliptic curve digital signing
algorithm”) is perhaps the most common, with Schnorr signatures gaining an increasing amount of traction.

7

Why doesn’t this caveat bother us? Because, assuming the key length ` is at least several
hundred bits, this brute-force attack would need to enumerate over 2` possibilities and would
be completely unimplementable—the search literally wouldn’t finish before the collapse of
our sun. (For reference, the estimated number of atoms in the known universe is something
like 2265.) Turning this into a theorem thus requires a (modest) assumption, that everybody
(including our adversaries) are computationally bounded. For example, we could assume
that there exists some polynomial function p (say, p(x) = x20 or p(x) = x100) such that no
adversary can perform more than p(`) computer operations, where ` denotes the key length.
(Every polynomial function is asymptotically smaller than every exponential function, so
this assumption precludes brute-force search for sufficiently long keys.)

We’re still not done, as who said that an adversary won’t do anything more clever than
brute-force search? When you study algorithms, you learn tons of problems for which brute-
force search would take an exponentially long time and yet clever algorithms can cut through
the clutter and identify a solution in polynomial (often, near-linear) time. (The single-source
shortest-path problem and the minimum spanning tree problem are two classic examples.)
Who’s to say a clever adversary can’t find a clever short cut and reverse engineer a private key
sk from a collection of signed messages much faster than brute-force search? In response, we
need to make more assumptions—called (computational) complexity assumptions or hardness
assumptions—that certain problems cannot be solved efficiently (meaning in time polynomial
in the input size).5 For the digital signature schemes most commonly used in blockchain
protocols, security is based on the assumption that there is no polynomial-time algorithm
for the discrete logarithm problem in a suitably chosen group (i.e., the problem of reverse
engineering the exponent x from the terms g and gx, where g is a group generator and gx

denotes g multiplied by itself x times).
Finally, we need to deal with the fact that an attacker may use a randomized algorithm,

and so in principle (with nonzero but extremely low probability) might get lucky and ran-
domly guess our key. For this reason, any formal statement must tolerate a nonzero but
negligible failure probability. Thus, the formal statement of the security of a digital signal
scheme would look something like this: assuming a polynomial-bounded (randomized) at-
tacker and suitable complexity assumptions (like the hardness of discrete log), an attacker
that knows a collection of messages signed with the private key sk has only a negligible prob-
ability of generating a valid signature (the one that would be generated by signing with sk)
on a new message m. (The example messages can be chosen by the attacker, and can depend
on m.) Security statements of this form have been proved (under the stated assumptions)
for the digital signature schemes used in practice.

Now that my theorist’s conscience is clear, we’ll go back to using the ideal signatures
assumption for the rest of the lecture series. Again, this is a close approximation of reality.6

5It would of course be nice to actually prove mathematically that such assumptions are true, but doing so
would resolve the “P vs. NP” conjecture (by showing that the complexity classes P and NP are different),
an event that nobody is anticipating anytime soon.

6The digital signature schemes currently used in blockchain protocols are not “post-quantum secure,”
meaning that they will be broken once we have sufficiently large and powerful quantum computers. That’s a
ways off though, and meanwhile cryptographers have designed a new generation of digital signature schemes

8

4.4 Digital Signatures in Consensus Protocols

You can probably see why digital signatures are important for various blockchain use cases
(e.g., signing off on a transfer of your funds), but they can also be tremendously useful in
the design of the underlying consensus protocol. For example, they prevent a node A from
credibly claiming to a node B that a third node C sent a message m to A some time in
the past—as long as all the nodes are signing their messages, B will only believe A if A can
exhibit a version of m that has been signed by C. With digital signatures, they can’t make
up fake messages from other nodes; all nodes can do is repeat without modification what
they’ve heard. Unless otherwise noted, when we discuss consensus protocols, we will assume
that every message sent by one node to another is signed by the sender.

Default assumption: in a consensus protocol, every node signs every message that it
sends.

5 The State Machine Replication (SMR) Problem

5.1 Context

There are several notions of “consensus”; we’ll see at least three. We’ll start with the ver-
sion most immediately relevant to blockchain protocols, called the state machine replication
(SMR) problem.7 What’s a “state machine”? If you’ve ever studied automata (e.g., deter-
ministic finite automata (DFAs)) you have a good sense of what it means (states and a state
transition function). If not, some examples might help.

One of the old-school applications of the SMR problem is managing a replicated database.
Think of a big company like IBM, with some database of valuable information. Suppose
they want to charge customers for access to it (e,g., via queries and updates), but also want
to promise 99.999% uptime. You won’t get that level of uptime if the database is stored
on a single computer (hardware and software failures being too common). An obvious
idea for boosting uptime is to have multiple copies of the database, with each copy stored
on a different machine and in a different location (so that machine failures are somewhat
independent). But as soon as you have two or more copies of the data, you’ve got a new
problem—keeping them in sync with each other. (E.g., if a customer writes an update to
one copy, the update must also be reflected in the other copies, so that a corresponding read
returns the same answer no matter which copy you ask.) Here, “state” means the current
contents of the database, and each write to the database would effect a “state transition,”
moving from one state to a new one (which reflects the new write operation).

In a blockchain context, “state” will refer to the current status of the blockchain and its
users (e.g., the current balance of each account, the local state managed by smart contracts,

that are post-quantum secure (under suitable assumptions), waiting to be deployed when needed.
7If the name sounds archaic, you’re right, it’s from the 1980s. It’s kind of amazing—and a testament

to the power and utility of theory and abstraction—that the same essential difficulty of certain applications
from the 1980s are also central to the challenges of blockchain protocol design.

9

etc.). Executing a transaction (e.g., a payment from one account to another) effects a state
transition (e.g., with the new state reflecting the post-transfer account balances). Unlike
in the database example, where the only reason for replication is to increase uptime, in a
blockchain context, the primary motivation for replication is “decentralization,” meaning to
ensure that responsibility for the protocol is distributed over many machines, with no one
actor having significant control over its state and execution.

5.2 Problem Definition

In both the database and blockchain examples, the goal is to keep a bunch of nodes in
sync, meaning all of them make the same sequence of state transitions (database opera-
tions/transaction executions) and hence agree on the current state of the state machine
(database contents/blockchain state). This is the SMR problem. Summarizing:

1. There is a set of nodes responsible for running a consensus protocol, and a set of clients
who may submit “transactions” to one or more of the nodes.

2. Each node maintains a local append-only data structure—an ordered list of transac-
tions that only grows over time—which we’ll call its history.8

Note that order matters. If two writes to a database conflict, it matters which one is carried
out first. In a blockchain context, if two submitted transactions spend the same coins but
with two different recipients (an attempted “double-spend”), it matters which transaction is
executed first (as the second one will fail on the grounds of insufficient funds).

Informally, the goal in the SMR problem is to deploy code that keeps all the nodes in
sync, with the same local histories (same ordered sequences of transactions). But what does
this actually mean?

First, what form would a “solution” to the SMR problem take? Answer: a protocol. We
won’t bother with an overly formal definition, but think of a protocol as a piece of code
that is to be run by each of the nodes. This code manages both the computations and the
communications performed by the node as the protocol runs. Specifically, each node can:

• maintain local state, and perform local computations that depend on or affect that
state;

• receive messages from other nodes and from clients;

• send messages to other nodes.9

8Many people use the word ledger for this data structure. To my taste, “ledger” too strongly connotes
the use case of payments which, as we’ve said, seriously undersells the full potential of blockchain protocols
as a new computing platform.

9Generally, nodes to not send messages to clients.

10

The code is event-driven, meaning that when some event occurs (e.g., receiving a new message
from a client or another node), it can trigger a response from the node (e.g., some local
computations followed be sending out new messages to one or more other nodes).10

What does it mean for a protocol to be a “correct” solution to the SMR problem?11

That is, what guarantees do we want from a protocol? We can distinguish between safety
guarantees, which promise that a certain bad event never happens, and liveness guarantees,
which promise that a certain good event eventually happens. We’ll focus on one of each.

Goal #1: Consistency. We say that a protocol satisfies consistency if all the nodes
running it always agree on the history (i.e., the same ordered transaction sequence). Actually
we’ll be a little more flexible—if there’s a node in Siberia that always finds out about the
latest transactions later than everyone else, it’s OK if its local history lags, as long as it’s
always a prefix of other nodes’ histories (i.e., just needs to catch up). What absolutely
cannot happen is for two nodes to disagree on the relative order of two different transactions.
Consistency is the safety property promising that this bad event never occurs.

If we only cared about consistency, our lives would be easy. After all, the empty protocol
(with all nodes maintaining an empty history forevermore) satisfies consistency! So we also
need a guarantee that work eventually gets done.

Goal #2: Liveness. Every transaction submitted to at least one node is eventually added
to every node’s local history.12

Are there protocols that solve the SMR problem, in the sense of satisfying both consis-
tency and liveness? As we’ll see, the answer depends on a number of factors, including the
reliability of the underlying communication network and the number of compromised nodes.
In the following lectures you’ll learn the key possibility and impossibility results for SMR
consensus.13 We’ll eventually see how these theoretical results give us a lens through which
to compare different layer-1 protocols (e.g., some of which favor liveness, others of which
favor consistency). Next lecture, we’ll assume a super-reliable communication network and
give a protocol that solves the SMR problem even in the face of an overwhelming number of
compromised nodes. Later lectures will discuss protocols that solve the SMR problem under
weaker assumptions about the communication network (but stronger assumptions about the
number of compromised nodes).

10Depending on the exact computational model, nodes may also be able to keep track of (global) time
and use it in their decisions of what to compute and communicate (e.g., sending certain messages only after
a timeout).

11With a single-shot problem like, say, single-source shortest-paths, it’s clear what correctness means—an
algorithm should always identify the actual shortest path in a given input graph. For protocols that run
forever, without a clearly defined “output,” defining “correctness” is a much more subtle problem.

12For now, think of all transactions as always being valid and eligible for inclusion. Obviously, liveness
does not apply to invalid transactions (e.g., those lacking an appropriate digital signature or sufficient funds).

13It’s also interesting to minimize the amount of computation and communication required by a protocol—
and much of the past and present research literature focuses on exactly this—but such efficiency considera-
tions will be largely outside our scope.

11

