
COMS 6998-006 (Foundations of Blockchains): Homework #7

Due by 11:59 PM on Tuesday, November 30, 2021

Instructions:

(1) Solutions are to be completed and submitted in pairs.

(2) We are using Gradescope for homework submissions. See the course home page for instructions, the
late day policy, and the School of Engineering honor code.

(3) Please type your solutions if possible and we encourage you to use the LaTeX template provided on
the Courseworks page.

(4) Write convincingly but not excessively. (We reserve the right to deduct points for egregiously bad or
excessive writing.)

(5) Except where otherwise noted, you may refer to your lecture notes and the specific supplementary
readings listed on the course Web page only.

(6) You are not permitted to look up solutions to these problems on the Web. You should cite any outside
sources that you used. All words should be your own. Submissions that violate these guidelines will
(at best) be given zero credit, and may be treated as honor code violations.

(7) You can discuss the problems verbally at a high level with other pairs. And of course, you are encour-
aged to contact the course staff (via the discussion forum or office hours) for additional help.

(8) If you discuss solution approaches with anyone outside of your pair, you must list their names on the
front page of your write-up.

(9) Some of these problems are difficult, so your group may not solve them all to completion. In this case,
you can write up what you’ve got (subject to (4), above): partial proofs, lemmas, high-level ideas,
counterexamples, and so on.

Problem 1

(35 points) This problem develops the basic intuition behind DAG-based protocols in an idealized, best-case
environment. Consider the starting point of a proof-of-work longest-chain consensus protocol such as Bitcoin
or Ethereum. Now consider setting the cryptopuzzle difficulty low enough that the rate of block creation
becomes very fast (e.g., 10 blocks per second), and so there will be lots of forks. Assume also that we change
the consensus protocol (relative to longest-chain) so that, when a miner mines a block, it can include any
number of predecessor blocks that it knows about (as opposed to only one).

(a) (5 points) Suppose we make no assumptions other than that SHA-256 isn’t broken. (I.e., all miners
can be adversarial, there can be arbitrary propagation delays, etc.) Prove that the announced blocks
and their predecessor pointers always form a directed acyclic graph (DAG).

(b) (7 points) In a DAG-based protocol, honest mining means including in your block every leaf block that
you know about (i.e., every block that, as far as you know, hasn’t been extended yet). Consider a
simplified model in which all miners are honest and, other than ties in block creation, there are no
propagation delays. Precisely:

1



– G0 is the DAG with a single vertex (the genesis block).

– For t = 1, 2, . . ., derive Gt from Gt−1 as follows:

∗ Gt has Xt more vertices than Gt−1, where Xt is a positive random variable. (The distribution
won’t matter for us, it could be e.g. uniform over {1, 2, . . . , 10}.) Let Vt denote these new
vertices.

∗ For each new vertex v ∈ Vt, there is an edge directed from v back to each vertex that is a leaf
in Gt−1.

An ordering σ of a DAG G is a way to sequence its vertices v1, v2, . . . , vn so that all its edges are
directed forward (i.e., every edge (vi, vj) satisfies i < j). Ordering a DAG imposes an ordering on
the transactions contained in its blocks (which is needed to resolve conflicting transactions). We are
interested in orderings σ(G) computable by a casual observer, meaning that the ordering should depend
only on: (i) the graph G; and possibly (ii) the vertex IDs (e.g., the SHA-256 hash of the block contents).
In particular, σ should not depend directly on the time steps at which various vertices were created.

For the simplified model above, propose an ordering σ(Gt) of the blocks of each graph Gt such that
σ(Gt) extends σ(Gt−1) for each t (i.e., σ(Gt−1) is a prefix of σ(Gt)). Prove that your orderings have
the desired property.

(c) (8 points) Now suppose we relax the model to reflect the fact that a miner may not be aware of all
the latest blocks: at each time step t, each new vertex v ∈ Vt has an edge to at least one (but not
necessarily all) of the leaves in Gt−1.

Is there a way to define an ordering σ(Gt) of the blocks of each graph Gt that could arise in this relaxed
model satisfying the property in (b)? Provide either a proof that there is, or a proof that there isn’t.

(d) (9 points) Consider a different (weaker) consistency property that we might want: whenever two blocks
appear in both Gs and Gt, their relative order in σ(Gs) and σ(Gt) should be the same. Is there a way
to define an ordering σ(Gt) of the blocks of each graph Gt that could arise in the relaxed model in (c)
that satisfies this weaker consistency property? Provide either a proof that there is, or a proof that
there isn’t.

(e) (6 points) Is the weaker consistency property in (d) sufficient for a trustworthy blockchain, or at least
one with restricted functionality? (Assume everyone is honest, with forks occurring only inadvertently
as in the model in (c).) Explain your answer (and feel free to argue both sides).

Problem 2

(45 points) In this problem we’ll look at scaling up Nakamoto (i.e., Bitcoin) consensus in a different way,
using m parallel blockchains, each initialized with its own genesis block. (If convenient, you can assume
that m is a power of 2, e.g. 256 or 1024. All miners know all genesis blocks in advance.) The rate of block
creation within a single blockchain will be as in Bitcoin now (i.e., on average one every ten minutes), so
overall there will be a factor-m increase in throughput (i.e., the cryptopuzzle difficulty will be set so that
there are m new blocks per 10 minutes, on average).

(a) (5 points) Suppose each of the m blockchains runs Nakamoto consensus in parallel (with no interaction
between them). Thus, the authorized transactions in the blockchain Bi are those on the longest chain
in Bi. The ordering among authorized transactions within one blockchain is clear; we’ll worry about
the overall transaction ordering (across blockchains) in parts (c)–(e) below.

Suppose a miner chooses which block to extend (from any of the blockchains) as in Bitcoin, by including
the name (hash) of its (unique) predecessor. In this case, explain why it is a bad idea to use m parallel
blockchains with m large.

[Hint: it has to do with security. I.e., explain what an attacker could do.]

2



(b) (10 points) Intuitively, we’d like to force miners to mine simultaneously across all m blockchains,
rather than choosing their favorite a priori. Propose modifications to (i) the block metadata; (ii) the
interpretation of the block hash (under SHA-256); and/or (iii) the definition of block validity such that
(under the usual random oracle assumption for SHA-256):

(i) whenever an honest miner successfully mines a valid block, it is equally likely to belong to any of
the m blockchains;

(ii) no matter what an attacker does, for each of the m blockchains Bi, she can only add new blocks
to Bi at the usual rate (on average α blocks per 10 minutes, where α is her fraction of the overall
hashrate).

Prove that your construction satisfies the desired properties.

[Hints: The amount of new block metadata can scale linearly with m. Use some leftover bits from the
block hash.]

(c) (10 points) Using the construction in (b), prove that the liveness property for Nakamoto consensus
holds (with high probability) for each of the m blockchains. (I.e., Theorem 3 from Lecture 8; see also
Homework #3, Problem 4.)1

[Hints: Do not prove from scratch. Given a hypothetical attacker who can break this property, construct
another attacker who could break the original liveness property for the standard longest-consensus
protocol (Theorem 3 from Lecture 8). Your proof does not have to be 100% rigorous, but it should be
extremely convincing.]

(d) (10 points) In this and the next part, assume that all miners are honest and that everybody learns
instantly about every new block. (Hence, there is never a fork, and each of the m blockchains is just
a chain.) Next we explore how to impose a total ordering across the blocks in all of the blockchains.

Let M denote the union of the m parallel blockchains. An ordering σ(M) imposes a total ordering
on the blocks of M , and can depend only on the metadata in the blocks and on the sequence of
blocks in each blockchain. (The ordering should of course respect the orderings within each of the
blockchains.) For a sequence M0,M1, . . ., call a block b stable at time t if the order of the blocks up to
and including b is identical in σ(Mt), σ(Mt+1), . . . (i.e., the linear order is fixed forevermore through
block b). The stabilizing time of a block b is the difference between the first time at which b is stable
and the time at which b was created.

Our first definition of an ordering σ is: sequence blocks in order of height (i.e., how deep they are in
their own blockchain), breaking ties by the chain number. I.e., first are the m genesis blocks (starting
with that of B1 and ending with than of Bm), then the blocks whose immediate predecessor is a genesis
block, and so on.

Prove that, with this ordering, the expected stabilizing time of a block created at time t cannot in
general be bounded by any function that is independent of t.

[Hint: use that the standard deviation of a binomial random variable with n trials scales with
√
n.]

(e) (10 points) Suppose we include in the block metadata two new fields, rank and s-rank, which will be
defined inductively (the “s” stands for “successor”). Every genesis block has rank 0 and s-rank 1.
When a new block b1 is created, extending the block b0, b1’s rank is set to b0’s s-rank. Meanwhile,
b1’s s-rank it set either to its rank plus 1, or to the maximum s-rank of any other block (whichever is
larger).

Now suppose we sequence blocks in order of rank, breaking ties by the chain number. Prove that, for
all time steps t, the expected stabilizing time of the block created at time t can be bounded above by
a function that is independent of t.

[Hint: this is related to the coupon collector problem.]

1The model is the same as in Lecture 10. Winning hashes are found one by one. The next winning hash has an α chance to
be found by the attacker Alice, and a 1 − α chance of being found by an honest miner. You’ve defined what honest miners do
as part of your solution to (b). Alice can try to extend any blocks she wants, and can withhold winning hashes until she sees
fit.

3


