
COMS 6998-006 (Foundations of Blockchains): Homework #3

Due by 11:59 PM on Thursday, October 14, 2021

Instructions:

(1) Solutions are to be completed and submitted in pairs.

(2) We are using Gradescope for homework submissions. See the course home page for instructions, the
late day policy, and the School of Engineering honor code.

(3) Please type your solutions if possible and we encourage you to use the LaTeX template provided on
the Courseworks page.

(4) Write convincingly but not excessively. (We reserve the right to deduct points for egregiously bad or
excessive writing.)

(5) Except where otherwise noted, you may refer to your lecture notes and the specific supplementary
readings listed on the course Web page only.

(6) You are not permitted to look up solutions to these problems on the Web. You should cite any outside
sources that you used. All words should be your own. Submissions that violate these guidelines will
(at best) be given zero credit, and may be treated as honor code violations.

(7) You can discuss the problems verbally at a high level with other pairs. And of course, you are encour-
aged to contact the course staff (via the discussion forum or office hours) for additional help.

(8) If you discuss solution approaches with anyone outside of your pair, you must list their names on the
front page of your write-up.

(9) Some of these problems are difficult, so your group may not solve them all to completion. In this case,
you can write up what you’ve got (subject to (4), above): partial proofs, lemmas, high-level ideas,
counterexamples, and so on.

Problem 1

(25 points) Recall the Tendermint protocol for state machine replication from Lectures 6 and 7.

(a) (10 points) Prove that if f ≥ n/3, the protocol no longer satisfies consistency. That is, give a specific
strategy for the adversary (both the behavior of the Byzantine nodes and the message delivery choices)
that leads to two honest nodes writing different blocks (at the same height) to their local histories.

[If it’s helpful for this or the next part, you can assume that the adversary also gets to pick the fixed
round-robin order in which the protocol rotates leaders.]

(b) (15 points) In our liveness proof for the Tendermint protocol, we showed that, provided f < n/3, a
transaction known to all honest nodes will eventually appear in all honest nodes’ local histories. Show
that the conclusion no longer holds if we assume only that a transaction is known to a single honest
node. That is, give a specific strategy for the adversary (with f < n/3) that censors the transactions
known to a given honest node indefinitely.
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Problem 2

(15 points) Recall the permissioned version of longest-chain consensus from Lecture 8. Recall that a sequence
of leaders is w-balanced if every window of at least w consecutive leaders contains a strict majority of honest
leaders.

(a) (5 points) Suppose leaders are chosen round-robin, using an arbitrary order through the n nodes.
Assume that at most f nodes are Byzantine. What is the smallest value of w that guarantees that
this round-robin leader sequence is w-balanced? (In this and the next two parts, prove both an upper
bound and a matching lower bound.)

(b) (5 points) The previous part effectively studied worst-case robin-robin orderings. This part and the
next consider best-case orderings. Suppose f < n/2. What’s the smallest value of w for which there
exists a round-robin order that generates a w-balanced leader sequence?

(c) (5 points) Repeat part (b) under the stronger assumption that f < n/3.

Problem 3

(25 points) This problem considers the balancedness of random sequences of leaders. Consider such a sequence
in which each leader is chosen independently, and is Byzantine with probability α and honest with probability
1 − α. (This is equivalent to the case in which f = αn and each leader is chosen uniformly at random.)
Assume that α < 1

2 .

(a) (12 points) Let X1, X2, . . . , Xn denote n i.i.d. Bernouilli (i.e., 0-1) random variables, with E[Xi] =
Pr[Xi = 1] = p. Let µ denote np. By the linearity of expectation, E[

∑n
i=1Xi] =

∑n
i=1 E[Xi] = µ.

The Chernoff bounds state that the random variable
∑n
i=1Xi is almost always close to its expectation.

One of these bounds (which you should assume without proof) asserts that, for γ ∈ (0, 1):

Pr

[
n∑
i=1

Xi < (1− γ)µ

]
≤ e−

γ2µ
2 . (1)

Fix a failure probability δ. Prove that there exists a constant c1 such that, with probability at least
1− δ, a random leader sequence of length at least c1 ln 1

δ has a strict majority of honest leaders. (The
constant c1 can depend on the fraction α of Byzantine nodes.)

(b) (8 points) Prove that there exists a constant c2 such that, with probability at least 1 − δ, a length-T
leader sequence is c2(ln 1

δ + lnT )-balanced. (Again, c2 can depend on α.)

[Hint: Union bound.]

(c) (5 points) Let’s plug in some concrete numerical parameters. Suppose T = 1000 (roughly one week of
blocks in Bitcoin, for example). According to your analysis, in longest-chain consensus, how big should
you take k (the number of unconfirmed blocks at the end of the longest chain) to ensure consistency
(i.e., no blocks get rolled back) over the next T blocks with probability at least 90%?1

Problem 4

(15 points) Prove Theorem 3 from Lecture 8. That is, prove that with an infinitely long 2k-balanced leader
sequence, if a transaction is at some point known to every honest node, then it will eventually be included
in a (confirmed) block of Bk(G).

1BTW, here’s the proof of Theorem 2 (self-consistency/finality of longest-chain consensus) that we didn’t have time for in
Lecture 8. Toward a contradiction, suppose that a block b belongs to Bk(Gi) but not Bk(Gj) for some j > i. In particular, b
is in every longest chain of Gi but is excluded from some longest chain of Gj . Consider the first h ∈ {i + 1, i + 2, . . . , j} for
which there is a longest chain excluding b. In Gh, there is a tie between two longest chains. These chains differ in their last k
blocks (because b is k blocks deep on one of the chains and excluded from the other one). But Theorem 1 (the well-definedness
of Bk(G) proved in lecture) asserts that this can never happen (under the 2k-balancedness assumption), a contradiction.
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Problem 5

(30 points) This problem extends the “super-synchronous” model from Lectures 8 and 9 to include bounded
message delays. We assume proof-of-work leader selection (and thus can proceed in the permissionless
setting), and that an α < 1

2 fraction of the hashrate is Byzantine. There is no limit on the number of (honest
or Byzantine) nodes in the system.

The new model is:

• There are time steps t = 1, 2, . . . , T . Messages sent at a time t are received by the beginning of time
step t + 1.2 (Honest nodes only send messages via broadcast. Byzantine nodes can send different
messages to different honest nodes.)

• During each time step, each node successfully produces 0 or 1 proof-of-work solutions (encoding a block
and its predecessor). A node that controls an h fraction of the total hashrate produces a block in a
given time step with probability h · ν, where ν is a small constant. (Thus, ν is the expected number of
blocks produced per time step.)

• An honest node always seeks to extend the longest chain (breaking ties between longest chains arbi-
trarily), and in every time step broadcasts all of the blocks that it knows about.

The key point is that, in this model, it is possible for more than one node to produce a block in the same
time step. Even honest nodes may therefore inadvertently create a fork. Because ties are broken arbitrarily,
honest nodes may then try to extend different branches of the fork.

State and prove analogs of Theorems 1–3 from Lecture 8 for this model.

[Hints: Feel free to assume that ν is at most a sufficiently small constant of your choosing (perhaps depending
on α); your theorem statements can depend on ν. Call a time step relevant if at least one block is produced.
Call a relevant time step good if exactly one node produces a block, and that node is an honest node. Prove
that, with high probability, for every sufficiently long sequence of relevant time steps, an almost 1−α fraction
of those time steps are good (see also Problem 3). If you need to bound from above the total number of blocks
found by the attacker or more generally in non-good time steps, use the fact that there are Chernoff-style
concentration inequalities for Poisson random variables.3 Modify the proofs of Theorems 1–3 from lecture,
with good time steps playing the previous role of honest blocks.]

2The analysis extends to the general synchronous model with an arbitrary a priori known bound ∆ on the maximum message
delay, as you’re invited to check. (This problem corresponds to ∆ = 1.) The key assumption needed is that the expected number
of blocks produced in an interval of ∆ time steps is small (analogous to the parameter ν in this problem being small). For
example, if in Bitcoin we (generously) set ∆ to 10 seconds (e.g., ∆ = 10000 with one-millisecond time steps), then, because
puzzle difficulty is tuned so that one block is produced every ten minutes on average, the probability of anyone producing a
block in a length-∆ time window is less than 2%.

3See, for example, https://math.stackexchange.com/questions/2434883/chernoff-style-bounds-for-poisson-distribution.
You may use these inequalities without proof. But be sure to explain why your random variable of interest has a Poisson
distribution.
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